Department of Biomedical Sciences, Genetics and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Hassan II-Casablanca University, Rue Tariq Ibn Ziad, Casablanca, Morocco.
Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta, Biella, Italy.
Pan Afr Med J. 2022 Mar 2;41:170. doi: 10.11604/pamj.2022.41.170.31239. eCollection 2022.
breast cancer (BC) is a malignancy with very high incidence and mortality in Africa, especially in Western Africa, where more than 25 thousand deaths are registered every year. Not all BC have the same prognosis, and being able to personalize treatment and predict aggressiveness is of crucial importance. The purpose of our study is to explore further subdivisions associated with prognosis, beyond breast cancer molecular classification that is routinely established in pathology departments.
we conducted a 5-year retrospective cohort study on 1266 invasive BC of Moroccan patients, collected at the Pathology Department of Ibn-Rochd University Hospital in Casablanca, and followed at King Mohammed VI National Centre for the Treatment of Cancers. We elaborated an Estimation-Maximization Clustering, based on the main BC biomarkers: Ki-67, HER2, estrogen and progesterone receptors, evaluated by immunohistochemistry. Two independent datasets (TCGA-BRCA and Metabric) were also analyzed to assess the external reproducibility of the results.
each molecular subgroup could be partitioned into two further subdivisions: Cluster1, with average Ki-67 of 16.26% (±11.9) across all molecular subgroups and higher frequency within luminal BC, and Cluster2, with average Ki-67 of 68.8%(±18) across all molecular subgroups and higher frequency in HER2 as well as in triple-negative BC. Overall survival of the two Clusters was significantly different, with 5-year rates of 52 and 37 months for Custer1 and Cluster2, respectively (p=0.000001). Moreover, mortality rates within the same molecular subgroup, especially in luminal B HER2-, varied remarkably depending on Cluster membership (6% for C1 and 18% for C2 after 1 year of follow-up). Two different algorithms to evaluate the prognostic importance, variable selection using random forests (VSURF) and Minimal depth, ranked the subdivision proposed as one of the 4 most influential features being able to predict patient survival better than several histoprognostic features, both in the Moroccan and in the external datasets.
our results highlight a new refinement of the BC molecular classification and provide a simple and improved way to classify tumors that could be applied in low to middle-income countries. This is the first study of its kind addressed in an African context.
乳腺癌(BC)是一种在非洲,特别是在西非发病率和死亡率非常高的恶性肿瘤,每年有超过 25000 人死亡。并非所有的乳腺癌都具有相同的预后,能够对治疗进行个性化并预测侵袭性至关重要。我们的研究目的是进一步探讨与预后相关的细分,除了病理科常规建立的乳腺癌分子分类之外。
我们对 1266 例摩洛哥浸润性乳腺癌患者进行了 5 年回顾性队列研究,这些患者均采集自卡萨布兰卡 Ibn-Rochd 大学医院的病理科,并在穆罕默德六世国王国家癌症治疗中心进行随访。我们通过免疫组织化学评估了主要的乳腺癌生物标志物(Ki-67、HER2、雌激素和孕激素受体),并在此基础上进行了估计最大化聚类分析。还分析了两个独立的数据集(TCGA-BRCA 和 Metabric),以评估结果的外部可重复性。
每个分子亚组都可以进一步细分为两个亚组:亚组 1,所有分子亚组的平均 Ki-67 为 16.26%(±11.9),在 luminal BC 中更为常见;亚组 2,所有分子亚组的平均 Ki-67 为 68.8%(±18),在 HER2 以及三阴性乳腺癌中更为常见。两个亚组的总生存率有显著差异,亚组 1 和亚组 2 的 5 年生存率分别为 52 个月和 37 个月(p=0.000001)。此外,同一分子亚组内的死亡率,尤其是在 luminal B HER2-,根据聚类成员的不同而显著变化(随访 1 年后,C1 为 6%,C2 为 18%)。两种不同的算法,随机森林的变量选择(VSURF)和最小深度,将所提出的细分作为能够比几个组织预后特征更好地预测患者生存的 4 个最有影响力特征之一进行了评估。这两种算法在摩洛哥和外部数据集都能很好地应用。
我们的研究结果突出了乳腺癌分子分类的一个新的细化,提供了一种简单且改进的方法来对肿瘤进行分类,这种方法可以在中低收入国家应用。这是在非洲背景下进行的此类研究中的第一项。