Jirasek Fabian, Bamler Robert, Fellenz Sophie, Bortz Michael, Kloft Marius, Mandt Stephan, Hasse Hans
Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern Erwin-Schrödinger-Str. 44 67663 Kaiserslautern Germany
Data Science and Machine Learning, University of Tübingen Maria-von-Linden-Str. 6 72076 Tübingen Germany.
Chem Sci. 2022 Apr 4;13(17):4854-4862. doi: 10.1039/d1sc07210b. eCollection 2022 May 4.
Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions like temperature and concentration. On the other hand, matrix completion methods (MCMs) from machine learning successfully generalize over (discrete) binary systems; these MCMs can make predictions without any data for a given binary system by implicitly learning commonalities across systems. In the present work, we combine the strengths from both worlds in a hybrid approach. The underlying idea is to predict the , as they are used in basically all physical models of liquid mixtures, by an MCM. As an example, we embed an MCM into UNIQUAC, a widely-used physical model for the Gibbs excess energy. We train the resulting hybrid model in a Bayesian machine-learning framework on experimental data for activity coefficients in binary systems of 1146 components from the Dortmund Data Bank. We thereby obtain, for the first time, a set of UNIQUAC parameters for all binary systems of these components, which allows us to predict, in principle, activity coefficients at arbitrary temperature and composition for any combination of these components, not only for binary but also for multicomponent systems. The hybrid model even outperforms the best available physical model for predicting activity coefficients, the modified UNIFAC (Dortmund) model.
混合物热力学性质的预测模型在化学工程和化学领域至关重要。经典热力学模型在概括温度和浓度等(连续)条件方面很成功。另一方面,机器学习中的矩阵补全方法(MCM)在(离散)二元体系上成功实现了概括;这些MCM可以通过隐式学习不同体系间的共性,在没有给定二元体系任何数据的情况下进行预测。在本工作中,我们采用一种混合方法将这两种方法的优势结合起来。其基本思想是通过MCM预测在基本上所有液体混合物物理模型中使用的 。例如,我们将一个MCM嵌入到UNIQUAC中,这是一个广泛用于吉布斯超额能量的物理模型。我们在贝叶斯机器学习框架中,根据多特蒙德数据库中1146种组分的二元体系活度系数实验数据,对所得的混合模型进行训练。由此,我们首次获得了这些组分所有二元体系的一组UNIQUAC参数,这使我们原则上能够预测这些组分任意组合在任意温度和组成下的活度系数,不仅适用于二元体系,也适用于多元体系。该混合模型在预测活度系数方面甚至优于现有的最佳物理模型——修正的UNIFAC(多特蒙德)模型。