Sun Xiaoping, Ren Xingshuai, Zhang Jie, Nie Yunzhi, Hu Shan, Yang Xiao, Jiang Shoufeng
Department of Neurology, Zhenhai People's Hospital, Ningbo, China.
Department of Respiratory, Zouping People's Hospital, Binzhou, China.
Front Genet. 2022 May 17;13:899340. doi: 10.3389/fgene.2022.899340. eCollection 2022.
Identifying biomarkers of Multiple Sclerosis is important for the diagnosis and treatment of Multiple Sclerosis. The existing study has shown that miRNA is one of the most important biomarkers for diseases. However, few existing methods are designed for predicting Multiple Sclerosis-related miRNAs. To fill this gap, we proposed a novel computation framework for predicting Multiple Sclerosis-associated miRNAs. The proposed framework uses a network representation model to learn the feature representation of miRNA and uses a deep learning-based model to predict the miRNAs associated with Multiple Sclerosis. The evaluation result shows that the proposed model can predict the miRNAs associated with Multiple Sclerosis precisely. In addition, the proposed model can outperform several existing methods in a large margin.
识别多发性硬化症的生物标志物对于多发性硬化症的诊断和治疗至关重要。现有研究表明,miRNA是疾病最重要的生物标志物之一。然而,现有的方法很少是专门设计用于预测与多发性硬化症相关的miRNA的。为了填补这一空白,我们提出了一种用于预测与多发性硬化症相关的miRNA的新型计算框架。所提出的框架使用网络表示模型来学习miRNA的特征表示,并使用基于深度学习的模型来预测与多发性硬化症相关的miRNA。评估结果表明,所提出的模型能够准确地预测与多发性硬化症相关的miRNA。此外,所提出的模型在很大程度上优于几种现有方法。