Suppr超能文献

动态肠系膜视频的梯度融合拼接

MOSAICING OF DYNAMIC MESENTERY VIDEO WITH GRADIENT BLENDING.

作者信息

Aktar Rumana, Huxley V H, Guidoboni G, AliAkbarpour H, Bunyak F, Palaniappan K

机构信息

Department of Electrical Engineering and Computer Science.

Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO-65211, USA.

出版信息

Proc Int Conf Image Proc. 2020 Oct;2020:563-567. doi: 10.1109/icip40778.2020.9191045. Epub 2020 Sep 30.

Abstract

In biomedical imaging using video microscopy, understanding large tissue structures at cellular and finer resolution poses many image acquisition challenges including limited field-of-view and tissue dynamics during imaging. Automated mosaicing or stitching of live tissue video microscopy enables the visualization and analysis of subtle morphological structures and large scale vessel network architecture in tissues like the mesentery. But mosacing can be challenging if there are deformable, motion-blurred, textureless, feature-poor frames. Feature-based methods perform poorly in such cases for the lack of distinctive keypoints. Standard single block correlation matching strategies might not provide robust registration due to deformable content. In addition, the panorama suffers if there is motion blur present in a sequence. To handle these challenges, we propose a novel algorithm, Deformable Normalized Cross Correlation (DNCC) image matching with RANSAC to establish robust registration. Besides, to produce seamless panorama from motion-blurred frames we present gradient blending method based on image edge information. The DNCC algorithm is applied on Frog Mesentery sequences. Our result is compared with PSS/AutoStitch [1, 2] to establish the efficiency and robustness of the proposed DNCC method.

摘要

在使用视频显微镜的生物医学成像中,以细胞及更精细分辨率理解大型组织结构会带来诸多图像采集挑战,包括成像过程中的有限视野和组织动态变化。活组织视频显微镜的自动拼接能够实现对肠系膜等组织中细微形态结构和大规模血管网络架构的可视化及分析。但如果存在可变形、运动模糊、无纹理、特征少的帧,拼接会具有挑战性。基于特征的方法在这种情况下因缺乏独特关键点而表现不佳。由于内容可变形,标准的单块相关匹配策略可能无法提供稳健的配准。此外,如果序列中存在运动模糊,全景图也会受影响。为应对这些挑战,我们提出一种新颖算法,即结合随机抽样一致性(RANSAC)的可变形归一化互相关(DNCC)图像匹配,以建立稳健的配准。此外,为从运动模糊帧生成无缝全景图,我们提出基于图像边缘信息的梯度融合方法。DNCC算法应用于青蛙肠系膜序列。我们将结果与PSS/AutoStitch [1, 2]进行比较,以确定所提出的DNCC方法的效率和稳健性。

相似文献

1
MOSAICING OF DYNAMIC MESENTERY VIDEO WITH GRADIENT BLENDING.动态肠系膜视频的梯度融合拼接
Proc Int Conf Image Proc. 2020 Oct;2020:563-567. doi: 10.1109/icip40778.2020.9191045. Epub 2020 Sep 30.
7
SLIM (slit lamp image mosaicing): handling reflection artifacts.SLIM(裂隙灯图像拼接):处理反射伪影。
Int J Comput Assist Radiol Surg. 2017 Jun;12(6):911-920. doi: 10.1007/s11548-017-1555-z. Epub 2017 Mar 13.
8
Robust Mosaicing of Endomicroscopic Videos via Context-Weighted Correlation Ratio.基于上下文加权相关比的内窥视频稳健拼接。
IEEE Trans Biomed Eng. 2021 Feb;68(2):579-591. doi: 10.1109/TBME.2020.3007768. Epub 2021 Jan 20.
9
A method for fast automated microscope image stitching.一种快速自动显微镜图像拼接方法。
Micron. 2013 May;48:17-25. doi: 10.1016/j.micron.2013.01.006. Epub 2013 Feb 14.

本文引用的文献

4
Structure propagation for image registration.图像配准的结构传播。
IEEE Trans Med Imaging. 2013 Sep;32(9):1657-70. doi: 10.1109/TMI.2013.2263151. Epub 2013 May 15.
7
Real-time video mosaicing with a high-resolution microendoscope.使用高分辨率微型内窥镜的实时视频拼接
Biomed Opt Express. 2012 Oct 1;3(10):2428-35. doi: 10.1364/BOE.3.002428. Epub 2012 Sep 7.
8
In vivo micro-image mosaicing.体内微图像拼接。
IEEE Trans Biomed Eng. 2011 Jan;58(1):159-71. doi: 10.1109/TBME.2010.2085082. Epub 2010 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验