Li Dongmei, Long Jiao, Qu Jintao, Zhang Xiaoping
School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China.
Engineering Research Center for Forestry-oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China.
Evid Based Complement Alternat Med. 2022 May 23;2022:2056039. doi: 10.1155/2022/2056039. eCollection 2022.
Traditional clinical named entity recognition methods fail to balance the effectiveness of feature extraction of unstructured text and the complexity of neural network models. We propose a model based on ALBERT and a multihead attention (MHA) mechanism to solve this problem. Structurally, the model first obtains character-level word embeddings through the ALBERT pretraining language model, then inputs the word embeddings into the iterated dilated convolutional neural network model to quickly extract global semantic information, and decodes the predicted labels through conditional random fields to obtain the optimal label sequence. Also, we apply the MHA mechanism to capture intercharacter dependencies from multiple aspects. Furthermore, we use the RAdam optimizer to boost the convergence speed and improve the generalization ability of our model. Experimental results show that our model achieves an F1 score of 85.63% on the CCKS-2019 dataset-an increase of 4.36% compared to the baseline model.
传统的临床命名实体识别方法无法平衡非结构化文本特征提取的有效性与神经网络模型的复杂性。我们提出了一种基于ALBERT和多头注意力(MHA)机制的模型来解决这个问题。在结构上,该模型首先通过ALBERT预训练语言模型获得字符级词嵌入,然后将词嵌入输入到迭代扩张卷积神经网络模型中以快速提取全局语义信息,并通过条件随机场解码预测标签以获得最优标签序列。此外,我们应用MHA机制从多个方面捕捉字符间的依赖关系。此外,我们使用RAdam优化器来提高收敛速度并提升模型的泛化能力。实验结果表明,我们的模型在CCKS - 2019数据集上的F1分数达到了85.63%,与基线模型相比提高了4.36%。