Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia, USA.
Electrophoresis. 2022 Sep;43(16-17):1746-1754. doi: 10.1002/elps.202200090. Epub 2022 Jul 8.
The laser print, cut, and laminate (PCL) method for microfluidic device fabrication can be leveraged for rapid and inexpensive prototyping of electrophoretic microchips useful for optimizing separation conditions. The rapid prototyping capability allows the evaluation of fluidic architecture, applied fields, reagent concentrations, and sieving matrix, all within the context of using fluorescence-compatible substrates. Cyclic olefin copolymer and toner-coated polyethylene terephthalate (tPeT) were utilized with the PCL technique and bonding methods optimized to improve device durability during electrophoresis. A series of separation channel designs and centrifugation conditions that provided successful loading of sieving polymer in less than 3 min was described. Separation of a 400-base DNA sizing ladder provided calculated base resolution between 3 and 4 bases, a greater than 18-fold improvement over separations on similar substrates. Finally, the accuracy and precision capabilities of these devices were demonstrated by separating and sizing DNA fragments of 147 and 167 bases as 148.62 ± 2 and 166.48 ± 3 bases, respectively.
激光打印、切割和层压(PCL)方法可用于微流控器件的快速和低成本原型制作,非常适合用于优化电泳微芯片的分离条件。快速原型制作能力允许在使用荧光兼容基底的情况下评估流体结构、应用领域、试剂浓度和筛分基质。环烯烃共聚物和涂有调色剂的聚对苯二甲酸乙二醇酯(tPeT)都可以与 PCL 技术一起使用,并优化键合方法以提高电泳过程中器件的耐用性。描述了一系列分离通道设计和离心条件,这些条件可在不到 3 分钟的时间内成功加载筛分聚合物。400 碱基 DNA 大小标准梯的分离提供了 3 到 4 个碱基之间的计算碱基分辨率,比在类似基底上的分离提高了 18 倍以上。最后,通过分离和测定 147 和 167 碱基的 DNA 片段,分别为 148.62±2 和 166.48±3 碱基,证明了这些器件的准确性和精密度。