Deptartment of Biomolecular Chemistry, Leibniz Institute of Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.
Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany.
Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202205409. doi: 10.1002/anie.202205409. Epub 2022 Jun 28.
Benzoxazole scaffolds feature prominently in diverse synthetic and natural product-derived pharmaceuticals. Our understanding of their bacterial biosynthesis is, however, limited to ortho-substituted heterocycles from actinomycetes. We report an overlooked biosynthetic pathway in anaerobic bacteria (typified in Clostridium cavendishii) that expands the benzoxazole chemical space to meta-substituted heterocycles and heralds a distribution beyond Actinobacteria. The first benzoxazoles from the anaerobic realm (closoxazole A and B) were elucidated by NMR and chemical synthesis. By genome editing in the native producer, heterologous expression in Escherichia coli, and systematic pathway dissection we show that closoxazole biosynthesis invokes an unprecedented precursor usage (3-amino-4-hydroxybenzoate) and manner of assembly. Synthetic utility was demonstrated by the precursor-directed biosynthesis of a tafamidis analogue. A bioinformatic survey reveals the pervasiveness of related gene clusters in diverse bacterial phyla.
苯并恶唑支架在各种合成和天然产物衍生的药物中占有重要地位。然而,我们对它们在细菌中的生物合成的理解仅限于放线菌中的邻位取代杂环。我们报告了一种在厌氧细菌(以栖粪肉碱梭菌为代表)中被忽视的生物合成途径,该途径将苯并恶唑的化学空间扩展到间位取代的杂环,并预示着其分布超出了放线菌。通过 NMR 和化学合成,首次从厌氧环境中阐明了苯并恶唑(closoxazole A 和 B)。通过对天然产生菌进行基因组编辑、在大肠杆菌中进行异源表达以及系统的途径剖析,我们表明 closoxazole 的生物合成采用了前所未有的前体(3-氨基-4-羟基苯甲酸)和组装方式。通过前体定向生物合成得到了一个塔法米迪类似物,证明了其合成的实用性。生物信息学调查揭示了相关基因簇在不同细菌门中的普遍性。