Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
Nucleic Acids Res. 2022 Jul 5;50(W1):W266-W271. doi: 10.1093/nar/gkac435.
RNA structures play critical roles in regulating gene expression across all domains of life and viruses. Chemical probing methods coupled with massively parallel sequencing have revolutionized the RNA structure field by enabling the assessment of many structures in their native, physiological context. Previously, we developed Dimethyl-Sulfate-based Mutational Profiling and Sequencing (DMS-MaPseq), which uses DMS to label the Watson-Crick face of open and accessible adenine and cytosine bases in the RNA. We used this approach to determine the genome-wide structures of HIV-1 and SARS-CoV-2 in infected cells, which permitted uncovering new biology and identifying therapeutic targets. Due to the simplicity and ease of the experimental procedure, DMS-MaPseq has been adopted by labs worldwide. However, bioinformatic analysis remains a substantial hurdle for labs that often lack the necessary infrastructure and computational expertise. Here we present a modern web-based interface that automates the analysis of chemical probing profiles from raw sequencing files (http://rnadreem.org). The availability of a simple web-based platform for DMS-MaPseq analysis will dramatically expand studies of RNA structure and aid in the design of structure-based therapeutics.
RNA 结构在所有生命领域和病毒的基因表达调控中起着关键作用。化学探测方法与大规模平行测序相结合,通过在天然生理环境中评估许多结构,彻底改变了 RNA 结构领域。此前,我们开发了基于二甲基硫酸盐的诱变分析和测序(DMS-MaPseq),该方法使用 DMS 标记 RNA 中开放和可及的腺嘌呤和胞嘧啶碱基的沃森-克里克面。我们使用这种方法来确定感染细胞中 HIV-1 和 SARS-CoV-2 的全基因组结构,从而揭示了新的生物学特性并确定了治疗靶点。由于实验程序简单易行,DMS-MaPseq 已被世界各地的实验室采用。然而,生物信息学分析仍然是一个很大的障碍,因为许多实验室缺乏必要的基础设施和计算专业知识。在这里,我们展示了一个现代化的基于网络的界面,该界面可以自动分析来自原始测序文件的化学探测图谱(http://rnadreem.org)。用于 DMS-MaPseq 分析的简单基于网络的平台的可用性将极大地扩展 RNA 结构研究,并有助于基于结构的治疗方法的设计。