Xiao Jianhua, Zhang Xinxin, Fan Haiyan, Zhao Yuxing, Su Yi, Liu Haowen, Li Xuanzhang, Su Yipeng, Yuan Hua, Pan Ting, Lin Qiyuan, Pan Ludi, Zhang Yuegang
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China.
Adv Mater. 2022 Jul;34(30):e2203783. doi: 10.1002/adma.202203783. Epub 2022 Jun 23.
Passivation of the Mg anode surface in conventional electrolytes constitutes a critical issue for practical Mg batteries. In this work, a perfluorinated tert-butoxide magnesium salt, Mg(pftb) , is codissolved with MgCl in tetrahydrofuran (THF) to form an all-magnesium salt electrolyte. Raman spectroscopy and density function theory calculation confirm that [Mg Cl ·6THF] [Mg(pftb) ] is the main electrochemically active species of the electrolyte. The proper lowest unoccupied molecular orbital energy level of the [Mg(pftb) ] anion enables in situ formation of a stable solid electrolyte interphase (SEI) on Mg anodes. A detailed analysis of the SEI reveals that its stability originates from a dual-layered organic/inorganic hybrid structure. Mg//Cu and Mg//Mg cells using the electrolyte achieve a high Coulombic efficiency of 99.7% over 3000 cycles, and low overpotentials over ultralong-cycle lives of 8100, 3000, and 1500 h at current densities of 0.5, 1.0, and 2.0 mA cm , respectively. The robust SEI layer, once formed on a Mg electrode, is also shown highly effective in suppressing side-reactions in a TFSI -containing electrolyte. A high Coulombic efficiency of 99.5% over 800 cycles is also demonstrated for a Mg//Mo S full cell, showing great promise of the SEI forming electrolyte in future Mg batteries.
在传统电解质中,镁阳极表面的钝化是实用镁电池的一个关键问题。在这项工作中,一种全氟叔丁醇镁盐Mg(pftb)₂与MgCl₂在四氢呋喃(THF)中共同溶解,形成一种全镁盐电解质。拉曼光谱和密度泛函理论计算证实,[Mg₂Cl₃·6THF][Mg(pftb)₂]是该电解质的主要电化学活性物种。[Mg(pftb)₂]阴离子合适的最低未占据分子轨道能级能够在镁阳极上原位形成稳定的固体电解质界面(SEI)。对SEI的详细分析表明,其稳定性源于双层有机/无机混合结构。使用该电解质的Mg//Cu和Mg//Mg电池在3000次循环中实现了99.7%的高库仑效率,并且在电流密度分别为0.5、1.0和2.0 mA cm⁻²时,在8100、3000和1500 h的超长循环寿命中具有低过电位。一旦在镁电极上形成,坚固的SEI层在抑制含TFSI⁻电解质中的副反应方面也显示出高效性。对于Mg//Mo₆S₈全电池,在800次循环中也展示了99.5%的高库仑效率,这表明形成SEI的电解质在未来镁电池中具有巨大潜力。