Aston institute of Photonic technologies (AiPT), Aston University, Birmingham, B4 7ET, UK.
Department of Chemical, Biological, and Environmental Engineering, Escolad'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain.
J Ind Microbiol Biotechnol. 2022 Jul 30;49(4). doi: 10.1093/jimb/kuac018.
To successfully design expression systems for industrial biotechnology and biopharmaceutical applications; plasmid stability, efficient synthesis of the desired product and the use of selection markers acceptable to regulatory bodies are of utmost importance. In this work we demonstrate the application of a set of IPTG-inducible protein expression systems -- harboring different features namely, antibiotic vs auxotrophy marker; two-plasmids vs single plasmid expression system; expression levels of the repressor protein (LacI) and the auxotrophic marker (glyA) -- in high-cell density cultures to evaluate their suitability in bioprocess conditions that resemble industrial settings. Results revealed that the first generation of engineered strain showed a 50% reduction in the production of the model recombinant protein fuculose-1-phosphate aldolase (FucA) compared to the reference system from QIAGEN. The over-transcription of glyA was found to be a major factor responsible for the metabolic burden. The second- and third-generation of expression systems presented an increase in FucA production and advantageous features. In particular, the third-generation expression system is antibiotic-free, autotrophy-selection based and single-plasmid and, is capable to produce FucA at similar levels compared to the original commercial expression system. These new tools open new avenues for high-yield and robust expression of recombinant proteins in E. coli.
为了成功设计用于工业生物技术和生物制药应用的表达系统;质粒稳定性、所需产物的有效合成以及监管机构可接受的选择标记的使用至关重要。在这项工作中,我们展示了一组 IPTG 诱导型蛋白表达系统的应用 - 具有不同的特征,即抗生素与营养缺陷标记;双质粒与单质粒表达系统;阻遏蛋白(LacI)和营养缺陷标记(glyA)的表达水平 - 在高密度培养物中评估它们在类似于工业环境的生物工艺条件下的适用性。结果表明,第一代工程菌株与 QIAGEN 的参考系统相比,模型重组蛋白果糖-1-磷酸醛缩酶(FucA)的产量降低了 50%。发现 glyA 的过度转录是导致代谢负担的主要因素。第二代和第三代表达系统的 FucA 产量增加,并具有优势特征。特别是,第三代表达系统无抗生素、基于自主选择、单质粒,并且能够生产与原始商业表达系统相似水平的 FucA。这些新工具为大肠杆菌中重组蛋白的高产和稳健表达开辟了新途径。