Faculty of Medicine, Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Semmelweisstraße 14, 04103, Leipzig, Germany.
Department of Otolaryngology, Head and Neck Surgery, University Hospital Leipzig, Leipzig, Germany.
Int J Comput Assist Radiol Surg. 2022 Sep;17(9):1643-1650. doi: 10.1007/s11548-022-02675-3. Epub 2022 Jun 3.
Treatment decisions in oncology are demanding and affect survival, general health, and quality of life. Expert systems can handle the complexity of the oncological field. We propose the application of a hybrid modeling approach for decision support models consisting of expert-based implementation of a decision model structure and machine-learning (ML) based parameter generation. We demonstrate our approach for the treatment of oropharyngeal cancer.
We created a clinical decision model based on Bayesian Networks and iteratively optimized its characteristics using structured knowledge engineering approaches. We combined manual adaptation of individual concepts with automatic learning of parameters and causalities. Using data from 94 patient records, we targeted the needed objectivity and clinical significance.
In three iteration steps, we assessed the model with cross-validations. The initial aggregated accuracy of 0.529 could be increased to 0.883 in the final version. The predictive rates of the target nodes range from 0.557 to 0.960.
Combining different methodological approaches requires balancing the complexity of the clinical subject matter with the amount of information available in the dataset for ML application. Our method showed promising results because flaws of one approach can be overcome by the other approach. However, technical integrability as well as clinical acceptance must always be ensured.
肿瘤学中的治疗决策具有挑战性,会影响生存、总体健康状况和生活质量。专家系统可以处理肿瘤学领域的复杂性。我们提出了一种混合建模方法,用于决策支持模型,该方法由决策模型结构的基于专家的实现和基于机器学习(ML)的参数生成组成。我们以口咽癌的治疗为例来说明我们的方法。
我们基于贝叶斯网络创建了一个临床决策模型,并使用结构化知识工程方法迭代优化其特征。我们将手动调整个别概念与自动学习参数和因果关系相结合。使用来自 94 个患者记录的数据,我们针对所需的客观性和临床意义进行了目标设定。
我们在三个迭代步骤中使用交叉验证评估了模型。初始综合准确率为 0.529,最终版本可提高至 0.883。目标节点的预测率范围为 0.557 至 0.960。
结合不同的方法学方法需要在临床主题的复杂性与 ML 应用中数据集的可用信息量之间取得平衡。我们的方法取得了有希望的结果,因为一种方法的缺陷可以被另一种方法克服。但是,必须始终确保技术的可集成性和临床接受度。