Suppr超能文献

利用专家知识进行贝叶斯网络的结构学习。

Exploiting Experts' Knowledge for Structure Learning of Bayesian Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Nov;39(11):2154-2170. doi: 10.1109/TPAMI.2016.2636828. Epub 2016 Dec 7.

Abstract

Learning Bayesian network structures from data is known to be hard, mainly because the number of candidate graphs is super-exponential in the number of variables. Furthermore, using observational data alone, the true causal graph is not discernible from other graphs that model the same set of conditional independencies. In this paper, it is investigated whether Bayesian network structure learning can be improved by exploiting the opinions of multiple domain experts regarding cause-effect relationships. In practice, experts have different individual probabilities of correctly labeling the inclusion or exclusion of edges in the structure. The accuracy of each expert is modeled by three parameters. Two new scoring functions are introduced that score each candidate graph based on the data and experts' opinions, taking into account their accuracy parameters. In the first scoring function, the experts' accuracies are estimated using an expectation-maximization-based algorithm and the estimated accuracies are explicitly used in the scoring process. The second function marginalizes out the accuracy parameters to obtain more robust scores when it is not possible to obtain a good estimate of experts' accuracies. The experimental results on simulated and real world datasets show that exploiting experts' knowledge can improve the structure learning if we take the experts' accuracies into account.

摘要

从数据中学习贝叶斯网络结构是很困难的,主要是因为候选图的数量在变量数量上呈超指数增长。此外,仅使用观测数据,从其他建模相同条件独立性集的图中无法辨别真实的因果图。在本文中,研究了通过利用多个领域专家关于因果关系的意见是否可以改善贝叶斯网络结构学习。在实践中,专家对正确标记结构中边的包含或排除的个体概率有所不同。每个专家的准确性都通过三个参数进行建模。引入了两种新的评分函数,根据数据和专家的意见对每个候选图进行评分,同时考虑了他们的准确性参数。在第一个评分函数中,使用基于期望最大化的算法估计专家的准确性,并且在评分过程中显式地使用估计的准确性。第二个函数将准确性参数边缘化,以在无法获得专家准确性的良好估计时获得更稳健的分数。在模拟和真实世界数据集上的实验结果表明,如果考虑专家的准确性,利用专家的知识可以提高结构学习的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验