Instituto de Ciencias Químicas Aplicadas, Departamento de Física y Química, Facultad de Ingeniería, , Universidad Autónoma de Chile, Av. Alemania 01090, 4810101 -, Temuco, Chile.
Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Chemphyschem. 2022 Sep 5;23(17):e202200188. doi: 10.1002/cphc.202200188. Epub 2022 Jul 5.
The optical properties and transduction mechanisms in three reported optical chemosensors based on crown ether with selectivity turn-on luminescence toward Na over K , were investigated using Density Functional Theory/Time-Dependent Density Functional Theory (DFT/TD-DFT). The analysis of the structural stability of the conformers enables us to understand the optical properties of the sensors and their selectivity toward Na . The UV-Vis absorption and the radiative channels of the adiabatic S excited state were assessed. In these reported sensors, the Photoinduced Electron Transfer (PET) from the nitrogen and the oxygen (O-atoms of the substituted N-phenylaza group) lone pairs to fluorophore groups lead to a nonradiative deactivation process in the fluorophore to p-conjugated anilino-1,2,3-triazol ionophore. This Intramolecular Charge Transfer (ICT) deactivation produced the luminescence quenching in the free sensors and K /C1 complexes. The Na /sensor interaction produced a Chelation Enhanced Fluorescence (CHEF) due to the inhibition of the PET and ICT, which was confirmed via the calculated oscillator strength of the emission process. The K /sensor interaction displayed the possibility of PET in C3; however, this fact was inconclusive to affirm the quenching of luminescence, the CHEF in C2 and C3 and the selectivity toward Na over K in these systems. For this reason, simulation of the absorption and emissions spectra (calculated oscillator strength), calculation of the kinetic parameters (in charge transfers and radiative deactivations process), analysis of the metal-ligand interaction character, and the analysis of the structural stability of the conformers were determinant factors to understand the selectivity and the optical properties of these chemosensors. The results suggest that these theoretical tools can also be used to predict the optical properties and Na /K selectivity of optical chemosensors.
基于冠醚的三种报道的光化学传感器对 Na 具有选择性开荧光的光学性质和转导机制,使用密度泛函理论/含时密度泛函理论(DFT/TD-DFT)进行了研究。构象稳定性的分析使我们能够理解传感器的光学性质及其对 Na 的选择性。评估了绝热 S 激发态的紫外可见吸收和辐射通道。在这些报道的传感器中,从氮和氧(取代的 N-苯基氮杂基团的 O 原子)孤对电子到荧光团的光致电子转移(PET)导致荧光团的非辐射去活化过程共轭的苯胺基-1,2,3-三唑离聚物。这种分子内电荷转移(ICT)失活导致在游离传感器和 K/C1 复合物中产生荧光猝灭。Na/传感器相互作用由于 PET 和 ICT 的抑制而产生螯合增强荧光(CHEF),这通过发射过程的计算振子强度得到证实。K/传感器相互作用显示了在 C3 中发生 PET 的可能性;然而,这一事实尚不足以确定 CHEF 在 C2 和 C3 中的荧光猝灭以及这些体系中对 Na 的选择性优于 K。出于这个原因,吸收和发射光谱的模拟(计算振子强度)、电荷转移和辐射去活化过程的动力学参数的计算、金属-配体相互作用特性的分析以及构象稳定性的分析是理解这些化学传感器的选择性和光学性质的决定性因素。结果表明,这些理论工具也可用于预测光化学传感器的光学性质和 Na/K 选择性。