Suppr超能文献

有限采样的光声成像:机器学习方法综述

Photoacoustic imaging with limited sampling: a review of machine learning approaches.

作者信息

Wang Ruofan, Zhu Jing, Xia Jun, Yao Junjie, Shi Junhui, Li Chiye

机构信息

Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China.

Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.

出版信息

Biomed Opt Express. 2023 Mar 30;14(4):1777-1799. doi: 10.1364/BOE.483081. eCollection 2023 Apr 1.

Abstract

Photoacoustic imaging combines high optical absorption contrast and deep acoustic penetration, and can reveal structural, molecular, and functional information about biological tissue non-invasively. Due to practical restrictions, photoacoustic imaging systems often face various challenges, such as complex system configuration, long imaging time, and/or less-than-ideal image quality, which collectively hinder their clinical application. Machine learning has been applied to improve photoacoustic imaging and mitigate the otherwise strict requirements in system setup and data acquisition. In contrast to the previous reviews of learned methods in photoacoustic computed tomography (PACT), this review focuses on the application of machine learning approaches to address the limited spatial sampling problems in photoacoustic imaging, specifically the limited view and undersampling issues. We summarize the relevant PACT works based on their training data, workflow, and model architecture. Notably, we also introduce the recent limited sampling works on the other major implementation of photoacoustic imaging, i.e., photoacoustic microscopy (PAM). With machine learning-based processing, photoacoustic imaging can achieve improved image quality with modest spatial sampling, presenting great potential for low-cost and user-friendly clinical applications.

摘要

光声成像结合了高光学吸收对比度和深声学穿透性,能够无创地揭示生物组织的结构、分子和功能信息。由于实际限制,光声成像系统常常面临各种挑战,例如复杂的系统配置、较长的成像时间和/或不理想的图像质量,这些因素共同阻碍了它们的临床应用。机器学习已被用于改善光声成像,并减轻系统设置和数据采集方面原本严格的要求。与之前对光声计算机断层扫描(PACT)中学习方法的综述不同,本综述重点关注机器学习方法在解决光声成像中有限空间采样问题的应用,特别是有限视角和欠采样问题。我们根据相关PACT工作的训练数据、工作流程和模型架构对其进行总结。值得注意的是,我们还介绍了光声成像另一种主要实现方式,即光声显微镜(PAM)最近的有限采样工作。通过基于机器学习的处理,光声成像能够在适度的空间采样下实现更好的图像质量,为低成本和用户友好型临床应用展现出巨大潜力。

相似文献

1
Photoacoustic imaging with limited sampling: a review of machine learning approaches.有限采样的光声成像:机器学习方法综述
Biomed Opt Express. 2023 Mar 30;14(4):1777-1799. doi: 10.1364/BOE.483081. eCollection 2023 Apr 1.
5
Deep image prior for undersampling high-speed photoacoustic microscopy.用于欠采样高速光声显微镜的深度图像先验
Photoacoustics. 2021 Mar 31;22:100266. doi: 10.1016/j.pacs.2021.100266. eCollection 2021 Jun.
6
A review of clinical photoacoustic imaging: Current and future trends.临床光声成像综述:现状与未来趋势
Photoacoustics. 2019 Nov 7;16:100144. doi: 10.1016/j.pacs.2019.100144. eCollection 2019 Dec.
9
Review of cost reduction methods in photoacoustic computed tomography.光声计算机断层扫描中成本降低方法的综述
Photoacoustics. 2019 Jul 26;15:100137. doi: 10.1016/j.pacs.2019.100137. eCollection 2019 Sep.

本文引用的文献

4
Artifact removal in photoacoustic tomography with an unsupervised method.基于无监督方法的光声层析成像中的伪影去除
Biomed Opt Express. 2021 Sep 15;12(10):6284-6299. doi: 10.1364/BOE.434172. eCollection 2021 Oct 1.
7
Prostate cancer identification via photoacoustic spectroscopy and machine learning.通过光声光谱和机器学习识别前列腺癌。
Photoacoustics. 2021 Jun 6;23:100280. doi: 10.1016/j.pacs.2021.100280. eCollection 2021 Sep.
10
Deep image prior for undersampling high-speed photoacoustic microscopy.用于欠采样高速光声显微镜的深度图像先验
Photoacoustics. 2021 Mar 31;22:100266. doi: 10.1016/j.pacs.2021.100266. eCollection 2021 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验