Suppr超能文献

基于深度学习的 CT 图像去噪方法的性能:在剂量、重建核和层厚方面的泛化能力。

Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.

机构信息

Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

KLA Corporation, Milpitas, California, USA.

出版信息

Med Phys. 2022 Feb;49(2):836-853. doi: 10.1002/mp.15430. Epub 2022 Jan 19.

Abstract

PURPOSE

Deep learning (DL) is rapidly finding applications in low-dose CT image denoising. While having the potential to improve the image quality (IQ) over the filtered back projection method (FBP) and produce images quickly, performance generalizability of the data-driven DL methods is not fully understood yet. The main purpose of this work is to investigate the performance generalizability of a low-dose CT image denoising neural network in data acquired under different scan conditions, particularly relating to these three parameters: reconstruction kernel, slice thickness, and dose (noise) level. A secondary goal is to identify any underlying data property associated with the CT scan settings that might help predict the generalizability of the denoising network.

METHODS

We select the residual encoder-decoder convolutional neural network (REDCNN) as an example of a low-dose CT image denoising technique in this work. To study how the network generalizes on the three imaging parameters, we grouped the CT volumes in the Low-Dose Grand Challenge (LDGC) data into three pairs of training datasets according to their imaging parameters, changing only one parameter in each pair. We trained REDCNN with them to obtain six denoising models. We test each denoising model on datasets of matching and mismatching parameters with respect to its training sets regarding dose, reconstruction kernel, and slice thickness, respectively, to evaluate the denoising performance changes. Denoising performances are evaluated on patient scans, simulated phantom scans, and physical phantom scans using IQ metrics including mean-squared error (MSE), contrast-dependent modulation transfer function (MTF), pixel-level noise power spectrum (pNPS), and low-contrast lesion detectability (LCD).

RESULTS

REDCNN had larger MSE when the testing data were different from the training data in reconstruction kernel, but no significant MSE difference when varying slice thickness in the testing data. REDCNN trained with quarter-dose data had slightly worse MSE in denoising higher-dose images than that trained with mixed-dose data (17%-80%). The MTF tests showed that REDCNN trained with the two reconstruction kernels and slice thicknesses yielded images of similar image resolution. However, REDCNN trained with mixed-dose data preserved the low-contrast resolution better compared to REDCNN trained with quarter-dose data. In the pNPS test, it was found that REDCNN trained with smooth-kernel data could not remove high-frequency noise in the test data of sharp kernel, possibly because the lack of high-frequency noise in the smooth-kernel data limited the ability of the trained model in removing high-frequency noise. Finally, in the LCD test, REDCNN improved the lesion detectability over the original FBP images regardless of whether the training and testing data had matching reconstruction kernels.

CONCLUSIONS

REDCNN is observed to be poorly generalizable between reconstruction kernels, more robust in denoising data of arbitrary dose levels when trained with mixed-dose data, and not highly sensitive to slice thickness. It is known that reconstruction kernel affects the in-plane pNPS shape of a CT image, whereas slice thickness and dose level do not, so it is possible that the generalizability performance of this CT image denoising network highly correlates to the pNPS similarity between the testing and training data.

摘要

目的

深度学习(DL)在低剂量 CT 图像去噪中迅速得到应用。虽然有潜力通过过滤反投影方法(FBP)改善图像质量(IQ)并快速生成图像,但数据驱动的 DL 方法的性能通用性尚未完全了解。这项工作的主要目的是研究低剂量 CT 图像去噪神经网络在不同扫描条件下获取的数据中的性能通用性,特别是与以下三个参数有关:重建核、切片厚度和剂量(噪声)水平。次要目标是确定与 CT 扫描设置相关的任何潜在数据特性,这些特性可能有助于预测去噪网络的通用性。

方法

我们选择残差编码器-解码器卷积神经网络(REDCNN)作为这项工作中低剂量 CT 图像去噪技术的一个例子。为了研究网络在三个成像参数上的泛化能力,我们根据成像参数将低剂量大挑战(LDGC)数据中的 CT 体分为三组训练数据集,每组数据集改变一个参数。我们用它们训练 REDCNN,以获得六个去噪模型。我们分别针对剂量、重建核和切片厚度,将每个去噪模型在与其训练集相匹配和不匹配的数据集上进行测试,以评估去噪性能的变化。使用均方误差(MSE)、对比度依赖调制传递函数(MTF)、像素级噪声功率谱(pNPS)和低对比度病变检测(LCD)等 IQ 指标在患者扫描、模拟体模扫描和物理体模扫描上评估去噪性能。

结果

当测试数据在重建核中与训练数据不同时,REDCNN 的 MSE 较大,但在测试数据中切片厚度变化时,MSE 没有显著差异。用四分之一剂量数据训练的 REDCNN 在去噪更高剂量图像时的 MSE 略差于用混合剂量数据训练的 REDCNN(17%-80%)。MTF 测试表明,用两种重建核和切片厚度训练的 REDCNN 产生的图像具有相似的图像分辨率。然而,与用四分之一剂量数据训练的 REDCNN 相比,用混合剂量数据训练的 REDCNN 更好地保留了低对比度分辨率。在 pNPS 测试中,发现用平滑核数据训练的 REDCNN 无法去除锐核测试数据中的高频噪声,这可能是因为平滑核数据中缺乏高频噪声限制了训练模型去除高频噪声的能力。最后,在 LCD 测试中,REDCNN 提高了病变检测的灵敏度,与重建核是否匹配无关。

结论

观察到 REDCNN 在重建核之间的通用性较差,用混合剂量数据训练时对任意剂量水平的数据去噪更稳健,对切片厚度不敏感。已知重建核会影响 CT 图像的平面内 pNPS 形状,而切片厚度和剂量水平不会,因此该 CT 图像去噪网络的通用性性能可能与测试和训练数据之间的 pNPS 相似性高度相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验