Suppr超能文献

整合多模态数据集以构建针对阿尔茨海默病及相关痴呆症的高效药物重新定位流程。

Converging multi-modality datasets to build efficient drug repositioning pipelines against Alzheimer's disease and related dementias.

作者信息

Yin Zheng, Wong Stephen T C

机构信息

Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center and Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA.

出版信息

Med Rev (2021). 2022 Feb 14;2(1):110-113. doi: 10.1515/mr-2021-0017. eCollection 2022 Feb 1.

Abstract

Alzheimer's disease and related dementias (AD/ADRD) affects more than 50 million people worldwide but there is no clear therapeutic option affordable for the general patient population. Recently, drug repositioning studies featuring collaborations between academic institutes, medical centers, and hospitals are generating novel therapeutics candidates against these devastating diseases and filling in an important area for healthcare that is poorly represented by pharmaceutical companies. Such drug repositioning studies converge expertise from bioinformatics, chemical informatics, medical informatics, artificial intelligence, high throughput and high-content screening and systems biology. They also take advantage of multi-scale, multi-modality datasets, ranging from transcriptomic and proteomic data, electronical medical records, and medical imaging to social media information of patient behaviors and emotions and epidemiology profiles of disease populations, in order to gain comprehensive understanding of disease mechanisms and drug effects. We proposed a recursive drug repositioning paradigm involving the iteration of three processing steps of modeling, prediction, and validation to identify known drugs and bioactive compounds for AD/ADRD. This recursive paradigm has the potential of quickly obtaining a panel of robust novel drug candidates for AD/ADRD and gaining in-depth understanding of disease mechanisms from those repositioned drug candidates, subsequently improving the success rate of predicting novel hits.

摘要

阿尔茨海默病及相关痴呆症(AD/ADRD)在全球影响着超过5000万人,但目前尚无普通患者群体能够负担得起的明确治疗方案。最近,由学术机构、医疗中心和医院合作开展的药物重新定位研究正在催生出针对这些毁灭性疾病的新型治疗候选药物,并填补了制药公司涉足较少的一个重要医疗领域。此类药物重新定位研究汇聚了生物信息学、化学信息学、医学信息学、人工智能、高通量和高内涵筛选以及系统生物学等方面的专业知识。它们还利用了多尺度、多模态数据集,包括转录组学和蛋白质组学数据、电子病历、医学影像,以及患者行为和情绪的社交媒体信息和疾病人群的流行病学概况,以便全面了解疾病机制和药物作用。我们提出了一种递归式药物重新定位范式,该范式涉及建模、预测和验证这三个处理步骤的迭代,以识别用于AD/ADRD的已知药物和生物活性化合物。这种递归范式有可能快速获得一组用于AD/ADRD的强有力的新型药物候选物,并从这些重新定位的药物候选物中深入了解疾病机制,从而提高预测新靶点的成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e86/10471083/fe935d623646/j_mr-2021-0017_fig_001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验