Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA.
J Transl Med. 2023 May 20;21(1):332. doi: 10.1186/s12967-023-04192-6.
BACKGROUND: Despite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies. METHODS: Here, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved. RESULTS: We identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool. CONCLUSIONS: This study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
背景:尽管进行了大量的临床试验和几十年的努力,但目前仍没有治疗阿尔茨海默病的有效方法。由于在临床前和临床研究中产生了大量的组学数据,因此可以采用计算药物重定位方法来为阿尔茨海默病患者开发新的治疗策略。然而,在药物重定位中,确定最关键的病理生理机制和具有适当药效动力学和良好疗效的药物同样至关重要,而这在阿尔茨海默病研究中往往是不平衡的。
方法:在这里,我们研究了阿尔茨海默病中上调的中枢共表达基因,以确定适当的治疗靶点。我们通过检查目标基因在多种人类组织中的生存非必需性来支持我们的推理。我们筛选了来自 Connectivity Map 数据库中各种人类细胞系的转录组谱,这些细胞系受到药物诱导(6798 种化合物)和基因敲除的干扰。然后,我们应用基于谱的药物重定位方法,根据这些转录组谱之间的相关性来发现针对目标基因的药物。我们评估了这些再利用药物的生物利用度、功能富集谱和药物-蛋白质相互作用,并通过实验测定和 Western blot 证明了它们在神经胶质细胞培养物中的细胞活力和疗效。最后,我们评估了它们的药代动力学,以预测其疗效可以在多大程度上得到改善。
结果:我们确定了谷氨酰胺酶作为一个有前途的药物靶点。谷氨酰胺酶的过表达可能会加剧神经元中的谷氨酸兴奋性毒性,导致线粒体功能障碍和其他神经退行性变标志性过程。计算药物重定位揭示了八种药物:米托蒽醌、硼替佐米、帕比那唑、克唑替尼、醉茄素 A、SA-25547 和两种未研究的化合物。我们证明,通过多种与神经退行性变相关的机制,包括细胞骨架和蛋白质稳态,这些拟议药物可以有效抑制谷氨酰胺酶并减少病变脑中的谷氨酸产生。我们还使用 SwissADME 工具估计了帕比那唑和 SA-25547 的人体血脑屏障通透性。
结论:本研究通过多种计算方法,有效确定了阿尔茨海默病的标志物和针对该标志物及其相互关联的生物过程的化合物。我们的结果强调了突触谷氨酸信号在阿尔茨海默病进展中的重要性。我们建议使用具有良好活性的可再利用药物(如帕比那唑),并通过本文链接到谷氨酸合成,以及具有估计机制的新型分子(SA-25547)来治疗阿尔茨海默病患者。
Sci Rep. 2023-1-5
Front Pharmacol. 2020-1-29
Med Biol Eng Comput. 2025-2-17
J Enzyme Inhib Med Chem. 2024-12
Cell. 2023-2-16
Pharmaceutics. 2022-5-4
Pharmacol Ther. 2022-9
Int J Mol Sci. 2021-10-26