Suppr超能文献

3D 活体敷料改善热损伤模型的愈合并调节免疫反应。

3D Living Dressing Improves Healing and Modulates Immune Response in a Thermal Injury Model.

机构信息

Department of Surgical Sciences, University of Otago, Dunedin, New Zealand.

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.

出版信息

Tissue Eng Part C Methods. 2022 Aug;28(8):431-439. doi: 10.1089/ten.TEC.2022.0088. Epub 2022 Jul 26.

Abstract

Thermal injury trauma can induce a state of immunosuppression, causing wounds to become chronic in nature. Stem cell-based therapies represent a promising new approach to treat such wounds due to their capacity to self-renew and their multi-lineage potential. Mesenchymal stem cells (MSCs) are known to secrete endogenous factors that stimulate wound healing by promoting angiogenesis, extracellular matrix remodeling, skin regeneration, and by dampening down inflammation. MSC delivery in a biomaterial construct can augment their wound-healing capacity by concentrating cells at the burn site and upregulating trophic factor secretion. The work presented is the first to evaluate repair in an raft thermal injury model using a regenerative, dual cell delivery three-dimensional (3D) core/shell (c/s) "living dressing" construct. This previously characterized 3D c/s bioprinted construct, which delivers both MSCs and endothelial cells, was used to treat an 3D raft skin thermal injury wound model. The mesenchymal stromal cell line (T0523) was encapsulated within a gelatin-based shell bioink, and human umbilical vein endothelial cells within a chitosan-based core bioink to biofabricate a living dressing for enhanced thermal injury repair and regeneration. We hypothesized that the cell-laden c/s tissue engineered construct (TEC) would strengthen the wound's proangiogenic, anti-inflammatory, and skin regeneration potential. An thermal injury in a 3D raft skin model showed a slight delay in wound closure in the presence of the c/s TEC but was augmented by corresponding increases in the release of wound-healing factors, epidermal growth factor, matrix metalloproteinases-9, transforming growth factor-α, platelet-derived growth factor; a decrease in pro-inflammatory factor interleukin-6, and evidence of neovascularization.

摘要

热损伤创伤会导致免疫抑制状态,使伤口变得慢性。基于干细胞的疗法代表了一种有前途的新方法来治疗这种伤口,因为它们具有自我更新和多谱系潜力。间充质干细胞(MSCs)被认为分泌内源性因子,通过促进血管生成、细胞外基质重塑、皮肤再生和抑制炎症来刺激伤口愈合。在生物材料构建物中递送 MSC 可以通过将细胞集中在烧伤部位和上调营养因子分泌来增强其伤口愈合能力。目前的工作是首次使用再生的双细胞递送电纺 3D(3D)核/壳(c/s)“活敷料”构建体在 3D 浮筏热损伤模型中评估修复。这种先前经过表征的 3D c/s 生物打印构建体可同时递送 MSC 和内皮细胞,用于治疗 3D 浮筏皮肤热损伤伤口模型。间充质基质细胞系(T0523)被包裹在基于明胶的壳生物墨水内,人脐静脉内皮细胞被包裹在基于壳聚糖的核生物墨水中,以生物制造活敷料,从而增强热损伤修复和再生能力。我们假设负载细胞的 c/s 组织工程构建体(TEC)将增强伤口的促血管生成、抗炎和皮肤再生潜力。3D 浮筏皮肤模型中的热损伤显示,在存在 c/s TEC 的情况下,伤口闭合略有延迟,但通过相应增加伤口愈合因子、表皮生长因子、基质金属蛋白酶-9、转化生长因子-α、血小板衍生生长因子的释放得到增强;促炎因子白细胞介素-6 减少,并证明有新血管形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验