Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Boston VA Healthcare System, Boston, MA, USA.
Philos Trans A Math Phys Eng Sci. 2022 Jul 25;380(2228):20210019. doi: 10.1098/rsta.2021.0019. Epub 2022 Jun 6.
Cortical visual prostheses that aim to restore sight to the blind require the ability to create neural activity in the visual cortex. Electric stimulation delivered via microelectrodes implanted in the primary visual cortex (V1) has been the most common approach, although conventional electrodes may not effectively confine activation to focal regions and thus the acuity they create may be limited. Magnetic stimulation from microcoils confines activation to single cortical columns of V1 and thus may prove to be more effective than conventional microelectrodes, but the ability of microcoils to drive synaptic connections has not been explored. Here, we show that magnetic stimulation of V1 using microcoils induces spatially confined activation in the secondary visual cortex (V2) in mouse brain slices. Single-loop microcoils were fabricated using platinum-iridium flat microwires, and their effectiveness was evaluated using calcium imaging and compared with that of monopolar and bipolar electrodes. Our results show that compared to the electrodes, the microcoils better confined activation to a small region in V1. In addition, they produced more precise and sustained activation in V2. The finding that microcoil-based stimulation propagates to higher visual centres raises the possibility that complex visual perception, e.g. that requiring sustained synaptic inputs, may be achievable. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
皮质视觉假体旨在为盲人恢复视力,这需要在视觉皮层中产生神经活动的能力。通过植入初级视觉皮层 (V1) 的微电极进行电刺激是最常见的方法,尽管传统电极可能无法有效地将激活限制在焦点区域,因此它们产生的分辨率可能有限。来自微线圈的磁刺激将激活限制在 V1 的单个皮质柱内,因此可能比传统微电极更有效,但微线圈驱动突触连接的能力尚未得到探索。在这里,我们展示了使用微线圈对 V1 进行磁刺激会在小鼠脑切片的次级视觉皮层 (V2) 中引起空间受限的激活。使用铂铱扁平微丝制造了单匝微线圈,并使用钙成像评估了它们的有效性,并与单极和双极电极进行了比较。我们的结果表明,与电极相比,微线圈能更好地将激活限制在 V1 的一个小区域内。此外,它们在 V2 中产生了更精确和持续的激活。基于微线圈的刺激传播到更高的视觉中心的发现,提出了复杂的视觉感知,例如需要持续的突触输入,可能是可以实现的。本文是“高级神经技术:为健康和福祉转化创新”主题问题的一部分。