Suppr超能文献

基于伪多模态特征的帕金森病冻结步态高精度可穿戴检测。

High-accuracy wearable detection of freezing of gait in Parkinson's disease based on pseudo-multimodal features.

机构信息

Department of Automation Science and Electrical Engineering, Beihang University, China.

Department of Automation Science and Electrical Engineering, Beihang University, China.

出版信息

Comput Biol Med. 2022 Jul;146:105629. doi: 10.1016/j.compbiomed.2022.105629. Epub 2022 May 27.

Abstract

OBJECTIVE

Freezing of gait (FoG) is a serious symptom of Parkinson's disease and prompt detection of FoG is crucial for fall prevention. Although multimodal data combining electroencephalography (EEG) benefit accurate FoG detection, the preparation, acquisition, and analysis of EEG signals are time-consuming and costly, which impedes the application of multimodal information in FoG detection. This work proposes a wearable FoG detection method that merges multimodal information from acceleration and EEG while avoiding the acquisition of real EEG data.

METHODS

A proxy measurement (PM) model based on long-short-term-memory (LSTM) network was proposed to measure EEG features from accelerations, and pseudo-multimodal features, i.e., pseudo-EEG and acceleration, could be extracted using a highly wearable inertial sensor for FoG detection.

RESULTS

Based on a self-collected FoG dataset, the performance of different feature combinations were compared in terms of subject-dependent and cross-subject settings. In both settings, pseudo-multimodal features achieved the most promising performance, with a geometric mean of 91.0 ± 5.0% in subject-dependent setting and 91.0 ± 3.5% in cross-subject setting.

CONCLUSION

Our study suggests that wearable FoG detection can be enhanced through leveraging cross-modal information fusion.

SIGNIFICANCE

The new method provides a promising path for multimodal information fusion and the long-term monitoring of FoG in living environments.

摘要

目的

冻结步态(Freezing of gait,FoG)是帕金森病的严重症状,及时发现 FoG 对于预防跌倒至关重要。尽管结合脑电图(EEG)的多模态数据有助于准确检测 FoG,但 EEG 信号的准备、采集和分析既耗时又昂贵,这阻碍了多模态信息在 FoG 检测中的应用。本研究提出了一种融合加速度和 EEG 多模态信息的可穿戴 FoG 检测方法,同时避免采集真实 EEG 数据。

方法

提出了一种基于长短期记忆(LSTM)网络的代理测量(Proxy measurement,PM)模型,用于从加速度中测量 EEG 特征,并使用高度可穿戴的惯性传感器提取伪多模态特征,即伪 EEG 和加速度,以进行 FoG 检测。

结果

基于自采集的 FoG 数据集,在基于个体和跨个体设置下比较了不同特征组合的性能。在两种设置下,伪多模态特征均表现出最有前景的性能,基于个体的设置下几何平均值为 91.0±5.0%,跨个体的设置下几何平均值为 91.0±3.5%。

结论

本研究表明,通过利用跨模态信息融合,可以增强可穿戴 FoG 检测。

意义

该新方法为多模态信息融合以及在生活环境中对 FoG 的长期监测提供了有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验