Department of Electrical Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
O&P Electronics & Robotics Ltd., Limassol 3100, Cyprus.
Sensors (Basel). 2024 Jun 18;24(12):3959. doi: 10.3390/s24123959.
Parkinson's Disease (PD) is a complex neurodegenerative disorder characterized by a spectrum of motor and non-motor symptoms, prominently featuring the freezing of gait (FOG), which significantly impairs patients' quality of life. Despite extensive research, the precise mechanisms underlying FOG remain elusive, posing challenges for effective management and treatment. This paper presents a comprehensive meta-analysis of FOG prediction and detection methodologies, with a focus on the integration of wearable sensor technology and machine learning (ML) approaches. Through an exhaustive review of the literature, this study identifies key trends, datasets, preprocessing techniques, feature extraction methods, evaluation metrics, and comparative analyses between ML and non-ML approaches. The analysis also explores the utilization of cueing devices. The limited adoption of explainable AI (XAI) approaches in FOG prediction research represents a significant gap. Improving user acceptance and comprehension requires an understanding of the logic underlying algorithm predictions. Current FOG detection and prediction research has a number of limitations, which are identified in the discussion. These include issues with cueing devices, dataset constraints, ethical and privacy concerns, financial and accessibility restrictions, and the requirement for multidisciplinary collaboration. Future research avenues center on refining explainability, expanding and diversifying datasets, adhering to user requirements, and increasing detection and prediction accuracy. The findings contribute to advancing the understanding of FOG and offer valuable guidance for the development of more effective detection and prediction methodologies, ultimately benefiting individuals affected by PD.
帕金森病(PD)是一种复杂的神经退行性疾病,其特征是一系列运动和非运动症状,突出表现为步态冻结(FOG),这显著降低了患者的生活质量。尽管进行了广泛的研究,但 FOG 的确切机制仍难以捉摸,这对有效的管理和治疗构成了挑战。本文对 FOG 的预测和检测方法进行了全面的荟萃分析,重点关注可穿戴传感器技术和机器学习(ML)方法的集成。通过对文献的全面回顾,本研究确定了关键趋势、数据集、预处理技术、特征提取方法、评估指标以及 ML 和非 ML 方法之间的比较分析。该分析还探讨了提示设备的使用。在 FOG 预测研究中,可解释人工智能(XAI)方法的应用有限,这是一个显著的差距。要提高用户的接受度和理解度,就需要了解算法预测背后的逻辑。目前的 FOG 检测和预测研究存在一些局限性,在讨论中进行了识别。这些限制包括提示设备问题、数据集限制、伦理和隐私问题、财务和可及性限制以及多学科合作的需求。未来的研究方向集中在提高可解释性、扩展和多样化数据集、满足用户需求以及提高检测和预测准确性上。研究结果有助于深入了解 FOG,并为开发更有效的检测和预测方法提供有价值的指导,最终使 PD 患者受益。