Suppr超能文献

基于加权基因共表达网络分析(WGCNA)鉴定鼻咽癌中的关键通路和基因

Identification of key pathways and genes in nasopharyngeal carcinoma based on WGCNA.

作者信息

Dai Yongmei, Chen Wenhan, Huang Junpeng, Xie Li, Lin Jianfang, Chen Qianshun, Jiang Guicheng, Huang Chen

机构信息

Departments of Oncology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou 350001, China.

The Second Clinical Medical College of Fujian Medical University, Fujian 362000, China; Department of Clinical Medicine, Fujian Medical University, Fujian 350122, China.

出版信息

Auris Nasus Larynx. 2023 Feb;50(1):126-133. doi: 10.1016/j.anl.2022.05.013. Epub 2022 May 31.

Abstract

OBJECTIVE

We aim to identify the potential genes and signaling pathways associated with the nasopharyngeal carcinoma (NPC) prognosis using Weighted Gene Co-Expression Network Analysis (WGCNA).

METHODS

Gene Expression Omnibus (GEO) query was utilized to download two NPC mRNA microarray data. WGCNA was conducted on differentially expressed genes (DEGs) to obtain tumor-associated gene modules. Genes in core modules were intersected with DEGs for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. GSE102349 dataset was devoted to identifying prognostic hub genes by survival analysis and the results were confirmed by quantitative polymerase chain reaction (qPCR).

RESULTS

Co-expression networks were built, and we detected 12 gene modules. The Brown module and Magenta module were extremely associated with NPC samples. GO functional analysis and KEGG pathway analysis was carried out to the genes in the Brown and Magenta modules. Our data indicated that DEGs in Brown module and Magenta module were correlated with the biological regulation, metabolic process, reproduction, and cellular proliferation. Twenty-six hub genes were obtained and were considered to be closely related to NPC. GSE102349 dataset was devoted to identifying prognostic hub genes by survival analysis. The expression of IL33, MPP3 and SLC16A7 in GSE102349 dataset was significantly correlated with the progression-free survival (PFS). The results of qPCR indicated a strong correlation between SLC16A7 expression and the overall survival (OS).

CONCLUSIONS

WGCNA contributed to the detection of gene modules and identification of hub genes and crucial genes. These crucial genes might be potential targets for pharmaceutic therapies with potential clinical significance.

摘要

目的

我们旨在使用加权基因共表达网络分析(WGCNA)来识别与鼻咽癌(NPC)预后相关的潜在基因和信号通路。

方法

利用基因表达综合数据库(GEO)查询下载两个NPC mRNA微阵列数据。对差异表达基因(DEG)进行WGCNA以获得肿瘤相关基因模块。将核心模块中的基因与DEG进行交集分析,以进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)功能富集分析。GSE102349数据集用于通过生存分析鉴定预后关键基因,结果通过定量聚合酶链反应(qPCR)进行验证。

结果

构建了共表达网络,我们检测到12个基因模块。棕色模块和品红色模块与NPC样本高度相关。对棕色和品红色模块中的基因进行了GO功能分析和KEGG通路分析。我们的数据表明,棕色模块和品红色模块中的DEG与生物调节、代谢过程、生殖和细胞增殖相关。获得了26个关键基因,被认为与NPC密切相关。GSE102349数据集用于通过生存分析鉴定预后关键基因。GSE102349数据集中IL33、MPP3和SLC16A7的表达与无进展生存期(PFS)显著相关。qPCR结果表明SLC16A7表达与总生存期(OS)之间存在强相关性。

结论

WGCNA有助于检测基因模块以及鉴定关键基因和枢纽基因。这些关键基因可能是具有潜在临床意义的药物治疗的潜在靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验