Zhao Pandeng, Fu Shaqi, Wang Xue, Jiao Zheng, Cheng Lingli
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, PR China.
J Colloid Interface Sci. 2022 Oct 15;624:251-260. doi: 10.1016/j.jcis.2022.05.093. Epub 2022 May 20.
Complex hollow structure nanostructure is regarded as the desired approach to alleviating the volume change of lithium-ion batteries (LIBs). In this work, ZnS/NiS/NiS composite with a distinctive hierarchical hollow porous urchin-like structure was prepared through pyrolysis of bimetal-organic frameworks obtained by one-step solvothermal and firstly used as anodes for LIBs. Varying the metal molar ratios allows the control of the surface area and pore size distribution of ZnS/NiS/NiS. The obtained composite with a hollow porous urchin-like structure exhibits high porosity, large specific surface area, and strong synergetic interaction between ZnS and NiS/NiS can greatly buffer the volume expansion to keep the mechanical stability, ensure sufficient contact region between electrolyte and electrodes and shorten the Li transfer distance, meanwhile, the carbon derived from organic ligand of bimetal-organic frameworks also constructs the conductive matrix to accelerate electrons transfer. Based on the above outstanding properties, the obtained material delivers excellent rate capacity, superior reversible capacity, and long-cycle stability, especially disclosing a capacity of 615 mAh·g after 300 cycles at 2 A·g. This work proposes a feasible strategy to obtain a unique hollow porous urchin-like structure through pyrolysis of bimetal organic frameworks, it can be extended to fabricate other mixed metal sulfides nanostructures with excellent electrochemical performances.
复杂中空结构纳米结构被认为是缓解锂离子电池(LIBs)体积变化的理想方法。在这项工作中,通过一步溶剂热法获得的双金属有机框架的热解制备了具有独特分级中空多孔海胆状结构的ZnS/NiS/NiS复合材料,并首次将其用作LIBs的阳极。改变金属摩尔比可以控制ZnS/NiS/NiS的表面积和孔径分布。所获得的具有中空多孔海胆状结构的复合材料具有高孔隙率、大比表面积,并且ZnS与NiS/NiS之间强烈的协同相互作用可以极大地缓冲体积膨胀以保持机械稳定性,确保电解质与电极之间有足够的接触区域并缩短Li传输距离,同时,双金属有机框架有机配体衍生的碳也构建了导电基质以加速电子转移。基于上述优异性能,所获得的材料具有出色的倍率性能、优异的可逆容量和长循环稳定性,特别是在2 A·g下循环300次后展现出615 mAh·g的容量。这项工作提出了一种通过双金属有机框架热解获得独特中空多孔海胆状结构的可行策略,该策略可扩展到制备其他具有优异电化学性能的混合金属硫化物纳米结构。