Suppr超能文献

用 PCA-RVM-NAR 组合模型对微型空气质量监测仪监测数据进行校准。

Calibration of miniature air quality detector monitoring data with PCA-RVM-NAR combination model.

机构信息

Public Foundational Courses Department, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.

School of Intelligent Manufacturing, Sanmenxia Polytechnic, Sanmenxia, 472000, China.

出版信息

Sci Rep. 2022 Jun 4;12(1):9333. doi: 10.1038/s41598-022-13531-4.

Abstract

The development of miniature air quality detectors makes it possible for humans to monitor air quality in real time and grid. However, the accuracy of measuring pollutants by miniature air quality detectors needs to be improved. In this paper, the PCA-RVM-NAR combined model is proposed to calibrate the measurement accuracy of the miniature air quality detector. First, correlation analysis is used to find out the main factors affecting pollutant concentrations. Second, principal component analysis is used to reduce the dimensionality of these main factors and extract their main information. Thirdly, taking the extracted principal components as independent variables and the observed values of pollutant concentrations as dependent variables, a PCA-RVM model is established by the relevance vector machine. Finally, the nonlinear autoregressive neural network is used to correct the error and finally complete the establishment of the PCA-RVM-NAR model. Root mean square error, goodness of fit, mean absolute error and relative mean absolute percent error are used to compare the calibration effect of PCA-RVM-NAR model and other commonly used models such as multiple linear regression model, support vector machine, multilayer perceptron neural network and nonlinear autoregressive models with exogenous input. The results show that, no matter which pollutant, the PCA-RVM-NAR model achieves better calibration results than other models in the four indicators. Using this model to correct the data of the miniature air quality detector can improve its accuracy by 77.8-93.9%.

摘要

微型空气质量检测器的发展使得人类能够实时、网格化地监测空气质量。然而,微型空气质量检测器测量污染物的准确性需要提高。本文提出了 PCA-RVM-NAR 组合模型来校准微型空气质量检测器的测量精度。首先,通过相关分析找出影响污染物浓度的主要因素。其次,采用主成分分析对这些主要因素进行降维和提取其主要信息。然后,将提取的主成分作为独立变量,将污染物浓度的观测值作为因变量,利用相关向量机建立 PCA-RVM 模型。最后,采用非线性自回归神经网络对误差进行修正,最终完成 PCA-RVM-NAR 模型的建立。采用均方根误差、拟合优度、平均绝对误差和相对平均绝对百分误差来比较 PCA-RVM-NAR 模型和其他常用模型(如多元线性回归模型、支持向量机、多层感知机神经网络和具有外生输入的非线性自回归模型)的校准效果。结果表明,无论哪种污染物,PCA-RVM-NAR 模型在这四个指标上都比其他模型具有更好的校准效果。使用该模型对微型空气质量检测器的数据进行修正,可以提高其精度 77.8%至 93.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e90b/9167304/44426b33a5d9/41598_2022_13531_Fig9_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验