Suppr超能文献

逐步回归分析和人工神经网络联合模型在微型空气质量探测器数据校准中的应用。

Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector.

机构信息

Public Foundational Courses Department, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.

Public Foundational Courses Department, Sanmenxia Polytechnic, Sanmenxia, 472000, China.

出版信息

Sci Rep. 2021 Feb 5;11(1):3247. doi: 10.1038/s41598-021-82871-4.

Abstract

In this paper, six types of air pollutant concentrations are taken as the research object, and the data monitored by the micro air quality detector are calibrated by the national control point measurement data. We use correlation analysis to find out the main factors affecting air quality, and then build a stepwise regression model for six types of pollutants based on 8 months of data. Taking the stepwise regression fitting value and the data monitored by the miniature air quality detector as input variables, combined with the multilayer perceptron neural network, the SRA-MLP model was obtained to correct the pollutant data. We compared the stepwise regression model, the standard multilayer perceptron neural network and the SRA-MLP model by three indicators. Whether it is root mean square error, average absolute error or average relative error, SRA-MLP model is the best model. Using the SRA-MLP model to correct the data can increase the accuracy of the self-built point data by 42.5% to 86.5%. The SRA-MLP model has excellent prediction effects on both the training set and the test set, indicating that it has good generalization ability. This model plays a positive role in scientific arrangement and promotion of miniature air quality detectors. It can be applied not only to air quality monitoring, but also to the monitoring of other environmental indicators.

摘要

本文以六种空气污染物浓度为研究对象,利用微型空气质量检测仪监测数据与国家监测点测量数据进行标定。采用相关分析找出影响空气质量的主要因素,然后基于 8 个月的数据,建立了六种污染物的逐步回归模型。以逐步回归拟合值和微型空气质量检测仪监测的数据作为输入变量,结合多层感知机神经网络,得到 SRA-MLP 模型,对污染物数据进行修正。通过三个指标对逐步回归模型、标准多层感知机神经网络和 SRA-MLP 模型进行比较,无论是均方根误差、平均绝对误差还是平均相对误差,SRA-MLP 模型都是最优的模型。使用 SRA-MLP 模型对数据进行修正可以将自建点数据的准确率提高 42.5%到 86.5%。SRA-MLP 模型对训练集和测试集均具有优异的预测效果,表明其具有良好的泛化能力。该模型对微型空气质量检测仪的科学布局和推广具有积极作用,不仅可应用于空气质量监测,还可应用于其他环境指标的监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1883/7865048/eb2d5d926006/41598_2021_82871_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验