Suppr超能文献

急性呼吸窘迫患儿的体位摆放。

Positioning for acute respiratory distress in hospitalised infants and children.

机构信息

Townsville University Hospital, Townsville, Australia.

School of Medicine and Dentistry, James Cook University, Townsville, Australia.

出版信息

Cochrane Database Syst Rev. 2022 Jun 6;6(6):CD003645. doi: 10.1002/14651858.CD003645.pub4.

Abstract

BACKGROUND

Acute respiratory distress syndrome (ARDS) is a significant cause of hospitalisation and death in young children. Positioning and mechanical ventilation have been regularly used to reduce respiratory distress and improve oxygenation in hospitalised patients. Due to the association of prone positioning (lying on the abdomen) with sudden infant death syndrome (SIDS) within the first six months, it is recommended that young infants be placed on their back (supine). However, prone positioning may be a non-invasive way of increasing oxygenation in individuals with acute respiratory distress, and offers a more significant survival advantage in those who are mechanically ventilated. There are substantial differences in respiratory mechanics between adults and infants. While the respiratory tract undergoes significant development within the first two years of life, differences in airway physiology between adults and children become less prominent by six to eight years old. However, there is a reduced risk of SIDS during artificial ventilation in hospitalised infants. Thus, an updated review focusing on positioning for infants and young children with ARDS is warranted. This is an update of a review published in 2005, 2009, and 2012.

OBJECTIVES

To compare the effects of different body positions in hospitalised infants and children with acute respiratory distress syndrome aged between four weeks and 16 years.

SEARCH METHODS

We searched CENTRAL, which contains the Acute Respiratory Infections Group's Specialised Register, MEDLINE, Embase, and CINAHL from January 2004 to July 2021.

SELECTION CRITERIA

Randomised controlled trials (RCTs) or quasi-RCTs comparing two or more positions for the management of infants and children hospitalised with ARDS.

DATA COLLECTION AND ANALYSIS

Two review authors independently extracted data from each study. We resolved differences by consensus, or referred to a third contributor to arbitrate. We analysed bivariate outcomes using an odds ratio (OR) and 95% confidence interval (CI). We analysed continuous outcomes using a mean difference (MD) and 95% CI. We used a fixed-effect model, unless heterogeneity was significant (I statistic > 50%), when we used a random-effects model.

MAIN RESULTS

We included six trials: four cross-over trials, and two parallel randomised trials, with 198 participants aged between 4 weeks and 16 years, all but 15 of whom were mechanically ventilated. Four trials compared prone to supine positions. One trial compared the prone position to good-lung dependent (where the person lies on the side of the healthy lung, e.g. if the right lung was healthy, they were made to lie on the right side), and independent (or non-good-lung independent, where the person lies on the opposite side to the healthy lung, e.g. if the right lung was healthy, they were made to lie on the left side) position. One trial compared good-lung independent to good-lung dependent positions. When the prone (with ventilators) and supine positions were compared, there was no information on episodes of apnoea or mortality due to respiratory events. There was no conclusive result in oxygen saturation (SaO MD 0.40 mmHg, 95% CI -1.22 to 2.66; 1 trial, 30 participants; very low certainty evidence); blood gases, PCO (MD 3.0 mmHg, 95% CI -1.93 to 7.93; 1 trial, 99 participants; low certainty evidence), or PO (MD 2 mmHg, 95% CI -5.29 to 9.29; 1 trial, 99 participants; low certainty evidence); or lung function (PaO/FiO ratio; MD 28.16 mmHg, 95% CI -9.92 to 66.24; 2 trials, 121 participants; very low certainty evidence). However, there was an improvement in oxygenation index (FiO% X M/ PaO) with prone positioning in both the parallel trials (MD -2.42, 95% CI -3.60 to -1.25; 2 trials, 121 participants; very low certainty evidence), and the cross-over study (MD -8.13, 95% CI -15.01 to -1.25; 1 study, 20 participants). Derived indices of respiratory mechanics, such as tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) were reported. There was an apparent decrease in tidal volume between prone and supine groups in a parallel study (MD -0.60, 95% CI -1.05 to -0.15; 1 study, 84 participants; very low certainty evidence). When prone and supine positions were compared in a cross-over study, there were no conclusive results in respiratory compliance (MD 0.07, 95% CI -0.10 to 0.24; 1 study, 10 participants); changes in PEEP (MD -0.70 cm HO, 95% CI -2.72 to 1.32; 1 study, 10 participants); or resistance (MD -0.00, 95% CI -0.05 to 0.04; 1 study, 10 participants). One study reported adverse events. There were no conclusive results for potential harm between groups in extubation (OR 0.57, 95% CI 0.13 to 2.54; 1 trial, 102 participants; very low certainty evidence); obstructions of the endotracheal tube (OR 5.20, 95% CI 0.24 to 111.09; 1 trial, 102 participants; very low certainty evidence); pressure ulcers (OR 1.00, 95% CI 0.41 to 2.44; 1 trial, 102 participants; very low certainty evidence); and hypercapnia (high levels of arterial carbon dioxide; OR 3.06, 95% CI 0.12 to 76.88; 1 trial, 102 participants; very low certainty evidence). One study (50 participants) compared supine positions to good-lung dependent and independent positions. There was no conclusive evidence that PaO was different between supine and good-lung dependent positioning (MD 3.44 mm Hg, 95% CI -23.12 to 30.00; 1 trial, 25 participants; very low certainty evidence). There was also no conclusive evidence for supine position and good-lung independent positioning (MD -2.78 mmHg, 95% CI -28.84, 23.28; 25 participants; very low certainty evidence); or between good-lung dependent and independent positioning (MD 6.22, 95% CI -21.25 to 33.69; 1 trial, 25 participants; very low certainty evidence). As most trials did not describe how possible biases were addressed, the potential for bias in these findings is unclear.

AUTHORS' CONCLUSIONS: Although included studies suggest that prone positioning may offer some advantage, there was little evidence to make definitive recommendations. There appears to be low certainty evidence that positioning improves oxygenation in mechanically ventilated children with ARDS. Due to the increased risk of SIDS with prone positioning and lung injury with artificial ventilation, it is recommended that hospitalised infants and children should only be placed in this position while under continuous cardiorespiratory monitoring.

摘要

背景

急性呼吸窘迫综合征(ARDS)是导致婴幼儿住院和死亡的重要原因。体位和机械通气经常用于减轻住院患者的呼吸窘迫并改善氧合。由于俯卧位(俯卧位)与婴儿猝死综合征(SIDS)在头 6 个月内有关,因此建议将小婴儿置于仰卧位(仰卧位)。然而,俯卧位可能是一种增加急性呼吸窘迫患者氧合的非侵入性方法,并且在机械通气的患者中提供了更显著的生存优势。成人和婴儿的呼吸力学有很大的不同。虽然在生命的头两年呼吸道有显著的发育,但在 6 岁到 8 岁之间,成人和儿童之间的气道生理学差异变得不那么明显。然而,在住院婴儿中进行人工通气时,SIDS 的风险降低。因此,有必要对患有 ARDS 的婴儿和幼儿的定位进行更新审查。这是 2005 年、2009 年和 2012 年发布的一篇综述的更新。

目的

比较急性呼吸窘迫综合征住院婴儿和儿童在 4 周至 16 岁之间不同体位的效果。

搜索方法

我们检索了包含急性呼吸道感染组专业注册库的 Cochrane 中心、MEDLINE、Embase 和 CINAHL,检索时间为 2004 年 1 月至 2021 年 7 月。

选择标准

随机对照试验(RCT)或准随机对照试验,比较两种或多种体位管理患有 ARDS 的住院婴儿和儿童。

数据收集和分析

两位综述作者独立地从每项研究中提取数据。我们通过共识解决差异,或者请第三位贡献者进行仲裁。我们使用比值比(OR)和 95%置信区间(CI)分析二分类结果。我们使用平均差异(MD)和 95%置信区间(CI)分析连续结果。我们使用固定效应模型,除非异质性显著(I 统计量>50%),否则我们使用随机效应模型。

主要结果

我们纳入了六项试验:四项交叉试验和两项平行随机试验,共 198 名 4 周至 16 岁的机械通气患者,除 15 名外,所有人均接受了机械通气。四项试验比较了俯卧位和仰卧位。一项试验比较了俯卧位与肺依赖位(即如果健康的肺侧,人躺在健康肺的一侧,例如,如果右肺健康,人就躺在右侧)和独立位(或非肺依赖位,如果健康的肺侧,人就躺在健康肺的对侧,例如,如果右肺健康,人就躺在左侧)。一项试验比较了肺依赖位和肺独立位。当俯卧位(带呼吸机)和仰卧位进行比较时,由于呼吸事件导致的呼吸暂停或死亡率的信息是没有的。在氧饱和度(SaO MD 0.40mmHg,95%CI-1.22 至 2.66;1 项试验,30 名参与者;极低确定性证据)、血气、PCO(MD 3.0mmHg,95%CI-1.93 至 7.93;1 项试验,99 名参与者;低确定性证据)或 PO(MD 2mmHg,95%CI-5.29 至 9.29;1 项试验,99 名参与者;低确定性证据)或肺功能(PaO/FiO 比值;MD 28.16mmHg,95%CI-9.92 至 66.24;2 项试验,121 名参与者;极低确定性证据)方面没有确凿的结果。然而,在两项平行试验(MD-2.42,95%CI-3.60 至-1.25;2 项试验,121 名参与者;极低确定性证据)和交叉研究(MD-8.13,95%CI-15.01 至-1.25;1 项研究,20 名参与者)中,俯卧位都改善了氧合指数(FiO%X M/PaO)。呼吸力学的衍生指标,如潮气量、呼吸频率和呼气末正压(PEEP)都有报道。在一项平行研究中,俯卧组和仰卧组之间的潮气量明显减少(MD-0.60,95%CI-1.05 至-0.15;1 项研究,84 名参与者;极低确定性证据)。在一项交叉研究中,俯卧位和仰卧位之间的呼吸顺应性(MD 0.07,95%CI-0.10 至 0.24;1 项研究,10 名参与者)、PEEP 变化(MD-0.70cmHO,95%CI-2.72 至 1.32;1 项研究,10 名参与者)或阻力(MD-0.00,95%CI-0.05 至 0.04;1 项研究,10 名参与者)没有明确的结果。一项研究报告了不良事件。在拔管(OR 0.57,95%CI 0.13 至 2.54;1 项试验,102 名参与者;极低确定性证据)、气管内管阻塞(OR 5.20,95%CI 0.24 至 111.09;1 项试验,102 名参与者;极低确定性证据)、压疮(OR 1.00,95%CI 0.41 至 2.44;1 项试验,102 名参与者;极低确定性证据)和高碳酸血症(高动脉二氧化碳水平;OR 3.06,95%CI 0.12 至 76.88;1 项试验,102 名参与者;极低确定性证据)方面,两组之间没有明确的结果。一项研究(50 名参与者)比较了仰卧位和肺依赖位和独立位。没有确凿的证据表明仰卧位和肺依赖位之间的 PaO 不同(MD 3.44mmHg,95%CI-23.12 至 30.00;1 项试验,25 名参与者;极低确定性证据)。仰卧位和肺独立位(MD-2.78mmHg,95%CI-28.84 至 23.28;25 名参与者;极低确定性证据)或肺依赖位和独立位(MD 6.22,95%CI-21.25 至 33.69;1 项试验,25 名参与者;极低确定性证据)之间也没有明确的证据。由于大多数试验没有描述如何处理可能存在的偏倚,因此这些发现的潜在偏倚是不清楚的。

作者的结论

尽管纳入的研究表明俯卧位可能有一定的优势,但几乎没有证据可以明确推荐。俯卧位可能会改善机械通气的 ARDS 患儿的氧合,这一点有低确定性证据。由于俯卧位增加了 SIDS 的风险,人工通气增加了肺损伤的风险,因此建议只在对住院婴儿和儿童进行连续心肺监测的情况下将其置于该位置。

相似文献

1
Positioning for acute respiratory distress in hospitalised infants and children.
Cochrane Database Syst Rev. 2022 Jun 6;6(6):CD003645. doi: 10.1002/14651858.CD003645.pub4.
2
Positioning for acute respiratory distress in hospitalised infants and children.
Cochrane Database Syst Rev. 2005 Apr 18(2):CD003645. doi: 10.1002/14651858.CD003645.pub2.
3
Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth.
Cochrane Database Syst Rev. 2022 Aug 9;8(8):CD006764. doi: 10.1002/14651858.CD006764.pub4.
4
Heliox for croup in children.
Cochrane Database Syst Rev. 2021 Aug 16;8(8):CD006822. doi: 10.1002/14651858.CD006822.pub6.
5
Exercise versus airway clearance techniques for people with cystic fibrosis.
Cochrane Database Syst Rev. 2022 Jun 22;6(6):CD013285. doi: 10.1002/14651858.CD013285.pub2.
6
Acupuncture for treating overactive bladder in adults.
Cochrane Database Syst Rev. 2022 Sep 23;9(9):CD013519. doi: 10.1002/14651858.CD013519.pub2.
7
Interventions for the management of transient tachypnoea of the newborn - an overview of systematic reviews.
Cochrane Database Syst Rev. 2022 Feb 24;2(2):CD013563. doi: 10.1002/14651858.CD013563.pub2.
8
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD010216. doi: 10.1002/14651858.CD010216.pub7.
9
Vaccines for preventing influenza in healthy children.
Cochrane Database Syst Rev. 2018 Feb 1;2(2):CD004879. doi: 10.1002/14651858.CD004879.pub5.
10
Electronic cigarettes for smoking cessation.
Cochrane Database Syst Rev. 2021 Sep 14;9(9):CD010216. doi: 10.1002/14651858.CD010216.pub6.

引用本文的文献

4
Mechanical ventilation core outcome set uptake in Cochrane systematic reviews: A cross-sectional study.
Cochrane Evid Synth Methods. 2024 Jan 10;2(1):e12038. doi: 10.1002/cesm.12038. eCollection 2024 Jan.
6
[Clinical study of prone positioning in invasive respiratory support for neonatal respiratory distress syndrome].
Zhongguo Dang Dai Er Ke Za Zhi. 2024 Jun 15;26(6):619-624. doi: 10.7499/j.issn.1008-8830.2312126.
7
8
Critical care of severe bronchiolitis during shortage of ICU resources.
EClinicalMedicine. 2024 Feb 1;69:102450. doi: 10.1016/j.eclinm.2024.102450. eCollection 2024 Mar.
9
A Brief Overview of Recent Pediatric Physical Therapy Practices and Their Importance.
Cureus. 2023 Oct 28;15(10):e47863. doi: 10.7759/cureus.47863. eCollection 2023 Oct.

本文引用的文献

1
Outcome of Patients With Esophageal Atresia and Very Low Birth Weight (≤ 1,500 g).
Front Pediatr. 2020 Nov 17;8:587285. doi: 10.3389/fped.2020.587285. eCollection 2020.
2
3
Tracking respiratory mechanics around natural breathing rates via variable ventilation.
Sci Rep. 2020 Apr 21;10(1):6722. doi: 10.1038/s41598-020-63663-8.
5
Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice.
Am J Respir Crit Care Med. 2020 Mar 1;201(5):514-525. doi: 10.1164/rccm.201907-1283CI.
6
RoB 2: a revised tool for assessing risk of bias in randomised trials.
BMJ. 2019 Aug 28;366:l4898. doi: 10.1136/bmj.l4898.
7
Sudden infant death syndrome: current perspectives.
Intern Med J. 2019 Apr;49(4):433-438. doi: 10.1111/imj.14248.
8
Prone positioning and extracorporeal membrane oxygenation for severe acute respiratory distress syndrome: time for a randomized trial?
Intensive Care Med. 2019 Jul;45(7):1040-1042. doi: 10.1007/s00134-019-05570-9. Epub 2019 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验