Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden.
Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden.
Cochrane Database Syst Rev. 2022 Feb 24;2(2):CD013563. doi: 10.1002/14651858.CD013563.pub2.
Transient tachypnoea of the newborn (TTN) is characterised by tachypnoea and signs of respiratory distress. It is caused by delayed clearance of lung fluid at birth. TTN typically appears within the first two hours of life in term and late preterm newborns. Although it is usually a self-limited condition, admission to a neonatal unit is frequently required for monitoring, the provision of respiratory support, and drugs administration. These interventions might reduce respiratory distress during TTN and enhance the clearance of lung liquid. The goals are reducing the effort required to breathe, improving respiratory distress, and potentially shortening the duration of tachypnoea. However, these interventions might be associated with harm in the infant.
The aim of this overview was to evaluate the benefits and harms of different interventions used in the management of TTN.
We searched the Cochrane Database of Systematic Reviews on 14 July 2021 for ongoing and published Cochrane Reviews on the management of TTN in term (> 37 weeks' gestation) or late preterm (34 to 36 weeks' gestation) infants. We included all published Cochrane Reviews assessing the following categories of interventions administered within the first 48 hours of life: beta-agonists (e.g. salbutamol and epinephrine), corticosteroids, diuretics, fluid restriction, and non-invasive respiratory support. The reviews compared the above-mentioned interventions to placebo, no treatment, or other interventions for the management of TTN. The primary outcomes of this overview were duration of tachypnoea and the need for mechanical ventilation. Two overview authors independently checked the eligibility of the reviews retrieved by the search and extracted data from the included reviews using a predefined data extraction form. Any disagreements were resolved by discussion with a third overview author. Two overview authors independently assessed the methodological quality of the included reviews using the AMSTAR 2 (A MeaSurement Tool to Assess systematic Reviews) tool. We used the GRADE approach to assess the certainty of evidence for effects of interventions for TTN management. As all of the included reviews reported summary of findings tables, we extracted the information already available and re-graded the certainty of evidence of the two primary outcomes to ensure a homogeneous assessment. We provided a narrative summary of the methods and results of each of the included reviews and summarised this information using tables and figures.
We included six Cochrane Reviews, corresponding to 1134 infants enrolled in 18 trials, on the management of TTN in term and late preterm infants, assessing salbutamol (seven trials), epinephrine (one trial), budesonide (one trial), diuretics (two trials), fluid restriction (four trials), and non-invasive respiratory support (three trials). The quality of the included reviews was high, with all of them fulfilling the critical domains of the AMSTAR 2. The certainty of the evidence was very low for the primary outcomes, due to the imprecision of the estimates (few, small included studies) and unclear or high risk of bias. Salbutamol may reduce the duration of tachypnoea compared to placebo (mean difference (MD) -16.83 hours, 95% confidence interval (CI) -22.42 to -11.23, 2 studies, 120 infants, low certainty evidence). We did not identify any review that compared epinephrine or corticosteroids to placebo and reported on the duration of tachypnoea. However, one review reported on "trend of normalisation of respiratory rate", a similar outcome, and found no differences between epinephrine and placebo (effect size not reported). The evidence is very uncertain regarding the effect of diuretics compared to placebo (MD -1.28 hours, 95% CI -13.0 to 10.45, 2 studies, 100 infants, very low certainty evidence). We did not identify any review that compared fluid restriction to standard fluid rates and reported on the duration of tachypnoea. The evidence is very uncertain regarding the effect of continuous positive airway pressure (CPAP) compared to free-flow oxygen therapy (MD -21.1 hours, 95% CI -22.9 to -19.3, 1 study, 64 infants, very low certainty evidence); the effect of nasal high-frequency (oscillation) ventilation (NHFV) compared to CPAP (MD -4.53 hours, 95% CI -5.64 to -3.42, 1 study, 40 infants, very low certainty evidence); and the effect of nasal intermittent positive pressure ventilation (NIPPV) compared to CPAP on duration of tachypnoea (MD 4.30 hours, 95% CI -19.14 to 27.74, 1 study, 40 infants, very low certainty evidence). Regarding the need for mechanical ventilation, the evidence is very uncertain for the effect of salbutamol compared to placebo (risk ratio (RR) 0.60, 95% CI 0.13 to 2.86, risk difference (RD) 10 fewer, 95% CI 50 fewer to 30 more per 1000, 3 studies, 254 infants, very low certainty evidence); the effect of epinephrine compared to placebo (RR 0.67, 95% CI 0.08 to 5.88, RD 70 fewer, 95% CI 460 fewer to 320 more per 1000, 1 study, 20 infants, very low certainty evidence); and the effect of corticosteroids compared to placebo (RR 0.52, 95% CI 0.05 to 5.38, RD 40 fewer, 95% CI 170 fewer to 90 more per 1000, 1 study, 49 infants, very low certainty evidence). We did not identify a review that compared diuretics to placebo and reported on the need for mechanical ventilation. The evidence is very uncertain regarding the effect of fluid restriction compared to standard fluid administration (RR 0.73, 95% CI 0.24 to 2.23, RD 20 fewer, 95% CI 70 fewer to 40 more per 1000, 3 studies, 242 infants, very low certainty evidence); the effect of CPAP compared to free-flow oxygen (RR 0.30, 95% CI 0.01 to 6.99, RD 30 fewer, 95% CI 120 fewer to 50 more per 1000, 1 study, 64 infants, very low certainty evidence); the effect of NIPPV compared to CPAP (RR 4.00, 95% CI 0.49 to 32.72, RD 150 more, 95% CI 50 fewer to 350 more per 1000, 1 study, 40 infants, very low certainty evidence); and the effect of NHFV versus CPAP (effect not estimable, 1 study, 40 infants, very low certainty evidence). Regarding our secondary outcomes, duration of hospital stay was the only outcome reported in all of the included reviews. One trial on fluid restriction reported a lower duration of hospitalisation in the restricted-fluids group, but with very low certainty of evidence. The evidence was very uncertain for the effects on secondary outcomes for the other five reviews. Data on potential harms were scarce, as all of the trials were underpowered to detect possible increases in adverse events such as pneumothorax, arrhythmias, and electrolyte imbalances. No adverse effects were reported for salbutamol; however, this medication is known to carry a risk of tachycardia, tremor, and hypokalaemia in other settings.
AUTHORS' CONCLUSIONS: This overview summarises the evidence from six Cochrane Reviews of randomised trials regarding the effects of postnatal interventions in the management of TTN. Salbutamol may reduce the duration of tachypnoea slightly. We are uncertain as to whether salbutamol reduces the need for mechanical ventilation. We are uncertain whether epinephrine, corticosteroids, diuretics, fluid restriction, or non-invasive respiratory support reduces the duration of tachypnoea and the need for mechanical ventilation, due to the extremely limited evidence available. Data on harms were lacking.
新生儿暂时性呼吸急促(TTN)的特征是呼吸急促和呼吸窘迫的迹象。它是由于出生时肺部液体清除延迟引起的。TTN 通常发生在足月和晚期早产儿出生后的前两个小时内。尽管它通常是一种自限性疾病,但为了监测、提供呼吸支持和药物治疗,通常需要将新生儿送入新生儿病房。这些干预措施可能会减轻 TTN 期间的呼吸窘迫,并促进肺液清除。其目的是减少呼吸的费力程度,改善呼吸窘迫,并可能缩短呼吸急促的持续时间。然而,这些干预措施可能会对婴儿造成伤害。
本综述旨在评估 TTN 管理中不同干预措施的获益和危害。
我们于 2021 年 7 月 14 日在 Cochrane 数据库中检索了正在进行和已发表的 Cochrane 综述,以评估治疗足月(>37 周妊娠)或晚期早产儿(34 至 36 周妊娠)婴儿 TTN 的管理。我们纳入了评估以下干预措施的所有已发表的 Cochrane 综述:β-激动剂(如沙丁胺醇和肾上腺素)、皮质类固醇、利尿剂、液体限制和无创性呼吸支持。这些综述将上述干预措施与安慰剂、无治疗或 TTN 管理的其他干预措施进行了比较。本综述的主要结局是呼吸急促的持续时间和机械通气的需求。两名综述作者独立检查了检索到的综述的资格,并使用预定义的数据提取表从纳入的综述中提取数据。任何分歧均通过与第三名综述作者讨论解决。两名综述作者独立使用 AMSTAR 2(一种评估系统评价的工具)工具评估纳入综述的方法学质量。我们使用 GRADE 方法评估干预措施治疗 TTN 管理效果的证据确定性。由于所有纳入的综述均报告了总结发现表,因此我们提取了已有的信息,并重新评估了两项主要结局的证据确定性,以确保进行同质评估。我们提供了对每项纳入综述的方法和结果的叙述性总结,并使用表格和图表对这些信息进行了总结。
我们纳入了 6 项 Cochrane 综述,涉及 18 项试验中的 1134 名婴儿,评估了沙丁胺醇(7 项试验)、肾上腺素(1 项试验)、布地奈德(1 项试验)、利尿剂(2 项试验)、液体限制(4 项试验)和无创性呼吸支持(3 项试验)对足月和晚期早产儿 TTN 的管理。纳入综述的质量很高,所有综述均满足 AMSTAR 2 的关键领域。由于估计值(纳入研究数量少、规模小)不精确以及存在偏倚或高风险,主要结局的证据确定性非常低。与安慰剂相比,沙丁胺醇可能会缩短呼吸急促的持续时间(平均差值(MD)-16.83 小时,95%置信区间(CI)-22.42 至-11.23,2 项研究,120 名婴儿,低确定性证据)。我们没有发现任何比较肾上腺素或皮质类固醇与安慰剂并报告呼吸急促持续时间的综述。然而,有一项综述报告了“呼吸频率正常化趋势”这一类似的结局,发现肾上腺素与安慰剂之间没有差异(未报告效应量)。与安慰剂相比,利尿剂对呼吸急促持续时间的影响证据不确定(MD-1.28 小时,95% CI-13.0 至 10.45,2 项研究,100 名婴儿,非常低确定性证据)。我们没有发现任何比较液体限制与标准液体速率并报告呼吸急促持续时间的综述。与 CPAP 相比,CPAP 对呼吸急促持续时间的影响证据不确定(MD-21.1 小时,95% CI-22.9 至-19.3,1 项研究,64 名婴儿,非常低确定性证据);与 CPAP 相比,NHFV 对呼吸急促持续时间的影响证据不确定(MD-4.53 小时,95% CI-5.64 至-3.42,1 项研究,40 名婴儿,非常低确定性证据);与 CPAP 相比,NIPPV 对呼吸急促持续时间的影响证据不确定(MD4.30 小时,95% CI-19.14 至 27.74,1 项研究,40 名婴儿,非常低确定性证据)。关于机械通气的需求,与安慰剂相比,沙丁胺醇的证据不确定(风险比(RR)0.60,95% CI 0.13 至 2.86,风险差异(RD)10 更少,95% CI 50 更少至 30 更多每 1000 名婴儿,3 项研究,254 名婴儿,非常低确定性证据);肾上腺素与安慰剂相比的证据不确定(RR 0.67,95% CI 0.08 至 5.88,RD 70 更少,95% CI 460 更少至 320 更多每 1000 名婴儿,1 项研究,20 名婴儿,非常低确定性证据);皮质类固醇与安慰剂相比的证据不确定(RR 0.52,95% CI 0.05 至 5.38,RD 40 更少,95% CI 170 更少至 90 更多每 1000 名婴儿,1 项研究,49 名婴儿,非常低确定性证据)。我们没有发现任何比较利尿剂与安慰剂并报告机械通气需求的综述。与标准液体给药相比,液体限制对机械通气需求的影响证据不确定(RR 0.73,95% CI 0.24 至 2.23,RD 20 更少,95% CI 70 更少至 40 更多每 1000 名婴儿,3 项研究,242 名婴儿,非常低确定性证据);CPAP 与自由流动氧气相比的证据不确定(RR 0.30,95% CI 0.01 至 6.99,RD 30 更少,95% CI 120 更少至 50 更多每 1000 名婴儿,1 项研究,64 名婴儿,非常低确定性证据);NIPPV 与 CPAP 相比的证据不确定(RR 4.00,95% CI 0.49 至 32.72,RD 150 更多,95% CI 50 更少至 350 更多每 1000 名婴儿,1 项研究,40 名婴儿,非常低确定性证据);以及 NHFV 与 CPAP 相比的证据不确定(效果不可估计,1 项研究,40 名婴儿,非常低确定性证据)。关于我们的次要结局,住院时间是所有纳入的综述中唯一报告的结局。一项关于液体限制的试验报告说,在限制液体组中住院时间更短,但证据确定性非常低。对于其他五项综述的其他效果,证据不确定。潜在危害的数据很少,因为所有试验都没有足够的效力来检测气胸、心律失常和电解质失衡等可能增加的不良事件。沙丁胺醇没有报告不良影响;然而,这种药物在其他情况下已知会导致心动过速、震颤和低钾血症。
本综述总结了来自六项 Cochrane 综述的随机试验的证据,这些综述评估了 TTN 管理中不同干预措施的效果。沙丁胺醇可能会略微缩短呼吸急促的持续时间。我们不确定沙丁胺醇是否会减少机械通气的需求。我们不确定沙丁胺醇、肾上腺素、皮质类固醇、利尿剂、液体限制或无创性呼吸支持是否会降低呼吸急促和机械通气的需求,因为现有证据极其有限。关于危害的数据缺乏。