Suppr超能文献

可用表面积和细胞弹性对高度有序硅纳米柱上细菌粘附力的影响。

Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars.

作者信息

Doll Patrick W, Doll Katharina, Winkel Andreas, Thelen Richard, Ahrens Ralf, Stiesch Meike, Guber Andreas E

机构信息

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.

出版信息

ACS Omega. 2022 May 17;7(21):17620-17631. doi: 10.1021/acsomega.2c00356. eCollection 2022 May 31.

Abstract

Initial bacterial adhesion to solid surfaces is influenced by a multitude of different factors, e.g., roughness and stiffness, topography on the micro- and nanolevel, as well as chemical composition and wettability. Understanding the specific influences and possible interactive effects of all of these factors individually could lead to guidance on bacterial adhesion and prevention of unfavorable consequences like medically relevant biofilm formation. On this way, the aim of the present study was to identify the specific influence of the available surface area on the adhesion of clinically relevant bacterial strains with different membrane properties: Gram-positive and Gram-negative . As model surfaces, silicon nanopillar specimens with different spacings were fabricated using electron beam lithography and cryo-based reactive ion etching techniques. Characterization by scanning electron microscopy and contact angle measurement revealed almost defect-free highly ordered nanotopographies only varying in the available surface area. Bacterial adhesion forces to these specimens were quantified by means of single-cell force spectroscopy exploiting an atomic force microscope connected to a microfluidic setup (FluidFM). The nanotopographical features reduced bacterial adhesion strength by reducing the available surface area. In addition, the strain-specific interaction in detail depended on the bacterial cell's elasticity and deformability as well. Analyzed by confocal laser scanning microscopy, the obtained results on bacterial adhesion forces could be linked to the subsequent biofilm formation on the different topographies. By combining two cutting-edge technologies, it could be demonstrated that the overall bacterial adhesion strength is influenced by both the simple physical interaction with the underlying nanotopography and its available surface area as well as the deformability of the cell.

摘要

细菌对固体表面的初始黏附受多种不同因素影响,例如粗糙度和硬度、微米及纳米级别的形貌,以及化学成分和润湿性。单独了解所有这些因素的具体影响和可能的相互作用效应,可能会为细菌黏附提供指导,并预防诸如医学上相关的生物膜形成等不良后果。通过这种方式,本研究的目的是确定可用表面积对具有不同膜特性的临床相关细菌菌株黏附的具体影响:革兰氏阳性菌和革兰氏阴性菌。作为模型表面,使用电子束光刻和基于低温的反应离子蚀刻技术制备了具有不同间距的硅纳米柱样品。通过扫描电子显微镜和接触角测量进行表征,结果显示几乎无缺陷的高度有序纳米形貌仅在可用表面积上有所不同。利用连接到微流体装置(FluidFM)的原子力显微镜,通过单细胞力谱法定量测定细菌对这些样品的黏附力。纳米形貌特征通过减少可用表面积降低了细菌黏附强度。此外,菌株特异性相互作用还详细取决于细菌细胞的弹性和可变形性。通过共聚焦激光扫描显微镜分析,所获得的关于细菌黏附力的结果可以与不同形貌上随后的生物膜形成联系起来。通过结合两种前沿技术,可以证明细菌的总体黏附强度受与底层纳米形貌及其可用表面积的简单物理相互作用以及细胞可变形性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c58/9161423/a1e4e5455d51/ao2c00356_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验