Robeldo Thaiane, Ribeiro Lucas S, Manrique Lida, Kubo Andressa Mayumi, Longo Elson, Camargo Emerson Rodrigues, Borra Ricardo Carneiro
Laboratory of Applied Immunology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil.
CDMF, LIEC, Chemistry Department of the Federal University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil.
ACS Omega. 2022 May 18;7(21):17563-17574. doi: 10.1021/acsomega.1c07046. eCollection 2022 May 31.
Low oxygen concentration inside the tumor microenvironment represents a major barrier for photodynamic therapy of many malignant tumors, especially urothelial bladder cancer. In this context, titanium dioxide, which has a low cost and can generate high ROS levels regardless of local O concentrations, could be a potential type of photosensitizer for treating this type of cancer. However, the use of UV can be a major disadvantage, since it promotes breakage of the chemical bonds of the DNA molecule on normal tissues. In the present study, we focused on the cytotoxic activities of a new material (Ti(OH)) capable of absorbing visible light and producing high amounts of ROS. We used the malignant bladder cell line MB49 to evaluate the effects of multiple concentrations of Ti(OH) on the cytotoxicity, proliferation, migration, and production of ROS. In addition, the mechanisms of cell death were investigated using FACS, accumulation of lysosomal acid vacuoles, caspase-3 activity, and mitochondrial electrical potential assays. The results showed that exposure of Ti(OH) to visible light stimulates the production of ROS and causes dose-dependent necrosis in tumor cells. Also, Ti(OH) was capable of inhibiting the proliferation and migration of MB49 in low concentrations. An increase in the mitochondrial membrane potential associated with the accumulation of acid lysosomes and low caspase-3 activity suggests that type II cell death could be initiated by autophagic dysfunction mechanisms associated with high ROS production. In conclusion, the characteristics of Ti(OH) make it a potential photosensitizer against bladder cancer.
肿瘤微环境中的低氧浓度是许多恶性肿瘤(尤其是膀胱尿路上皮癌)光动力治疗的主要障碍。在这种情况下,二氧化钛成本低廉,且无论局部氧浓度如何都能产生高水平的活性氧(ROS),可能是治疗这类癌症的一种潜在光敏剂。然而,使用紫外线可能是一个主要缺点,因为它会促使正常组织中DNA分子的化学键断裂。在本研究中,我们聚焦于一种能够吸收可见光并产生大量ROS的新材料(Ti(OH))的细胞毒性活性。我们使用恶性膀胱细胞系MB49来评估多种浓度的Ti(OH)对细胞毒性、增殖、迁移和ROS产生的影响。此外,还使用流式细胞术、溶酶体酸性液泡积累、半胱天冬酶 - 3活性和线粒体膜电位测定等方法研究细胞死亡机制。结果表明,Ti(OH)暴露于可见光下会刺激ROS的产生,并在肿瘤细胞中引起剂量依赖性坏死。而且,Ti(OH)在低浓度时能够抑制MB49的增殖和迁移。与酸性溶酶体积累和低半胱天冬酶 - 3活性相关的线粒体膜电位增加表明,II型细胞死亡可能由与高ROS产生相关的自噬功能障碍机制引发。总之,Ti(OH)的特性使其成为一种潜在的抗膀胱癌光敏剂。