Suppr超能文献

基于MRI特征的列线图模型用于鉴别非富血供胰腺神经内分泌肿瘤和胰腺导管腺癌

MRI Feature-Based Nomogram Model for Discrimination Between Non-Hypervascular Pancreatic Neuroendocrine Tumors and Pancreatic Ductal Adenocarcinomas.

作者信息

Xu Jiake, Yang Jie, Feng Ye, Zhang Jie, Zhang Yuqiao, Chang Sha, Jin Jingqiang, Du Xia

机构信息

Department of Gastroenterology, Kunshan Second People's Hospital, Kunshan, China.

Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.

出版信息

Front Oncol. 2022 May 19;12:856306. doi: 10.3389/fonc.2022.856306. eCollection 2022.

Abstract

This study aimed to investigate whether magnetic resonance imaging (MRI) features could differentiate non-hypervascular pancreatic neuroendocrine tumors (PNETs) from pancreatic ductal adenocarcinomas (PDACs). In this study, 131 patients with surgically and pathologically proven non-hypervascular PNETs ( = 44) or PDACs ( = 87) were enrolled. Two radiologists independently analyzed MRI imaging findings and clinical features. Relevant features in differentiating non-hypervascular PNETs from PDACs were identified univariate and multivariate logistic regression models. The MRI feature-based nomogram was constructed based on multivariable logistic analysis and the reliability of the constructed nomogram was further validated. The results showed that tumor margin ( = 0.012; OR: 6.622; 95% CI: 1.510, 29.028), MPD dilation ( = 0.047; OR: 4.309; 95% CI: 1.019, 18.227), and signal in the portal phase ( < 0.001; OR: 53.486; 95% CI: 10.690, 267.618) were independent discriminative MRI features between non-hypervascular PNETs and PDACs. The discriminative performance of the developed nomogram was optimized compared with single imaging features. The calibration curve, C-index, and DCA validated the superior practicality and usefulness of the MRI-based nomogram. In conclusion, the radiologically discriminative model integrating various MRI features could be preoperatively and easily utilized to differentiate non-hypervascular PNETs from PDACs.

摘要

本研究旨在探讨磁共振成像(MRI)特征能否区分非富血管性胰腺神经内分泌肿瘤(PNETs)与胰腺导管腺癌(PDACs)。本研究纳入了131例经手术及病理证实的非富血管性PNETs(n = 44)或PDACs(n = 87)患者。两名放射科医生独立分析MRI影像表现和临床特征。通过单因素和多因素逻辑回归模型确定区分非富血管性PNETs与PDACs的相关特征。基于多因素逻辑分析构建了基于MRI特征的列线图,并进一步验证了所构建列线图的可靠性。结果显示,肿瘤边界(P = 0.012;OR:6.622;95%CI:1.510,29.028)、主胰管扩张(P = 0.047;OR:4.309;95%CI:1.019,18.227)和门静脉期信号(P < 0.001;OR:53.486;95%CI:10.690,267.618)是非富血管性PNETs与PDACs之间独立的鉴别性MRI特征。与单一影像特征相比,所开发列线图的鉴别性能得到了优化。校准曲线、C指数和决策曲线分析验证了基于MRI的列线图具有更好的实用性和有效性。总之,整合多种MRI特征的放射学鉴别模型可在术前轻松用于区分非富血管性PNETs与PDACs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f925/9160740/ffe9307cf8be/fonc-12-856306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验