Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Centre for Neuroendocrinology, Department of Immunology, University of Pretoria, Pretoria, South Africa.
J Neuroendocrinol. 2022 Sep;34(9):e13164. doi: 10.1111/jne.13164. Epub 2022 Jun 6.
Hypothalamic arginine vasopressin (AVP)-containing magnocellular neurosecretory neurons (AVPMNN) emit collaterals to synaptically innervate limbic regions influencing learning, motivational behaviour, and fear responses. Here, we characterize the dynamics of expression changes of two key determinants for synaptic strength, the postsynaptic density (PSD) proteins AMPAR subunit GluA1 and PSD scaffolding protein 95 (PSD95), in response to in vivo manipulations of AVPMNN neuronal activation state, or exposure to exogenous AVP ex vivo. Both long-term water deprivation in vivo, which powerfully upregulates AVPMNN metabolic activity, and exogenous AVP application ex vivo, in brain slices, significantly increased GluA1 and PSD95 expression as measured by western blotting, in brain regions reportedly receiving direct ascending innervations from AVPMNN (i.e., ventral hippocampus, amygdala and lateral habenula). By contrast, the visual cortex, a region not observed to receive AVPMNN projections, showed no such changes. Ex vivo application of V1a and V1b antagonists to ventral hippocampal slices ablated the AVP stimulated increase in postsynaptic protein expression measured by western blotting. Using a modified expansion microscopy technique, we were able to quantitatively assess the significant augmentation of PSD95 and GLUA1 densities in subcellular compartments in locus coeruleus tyrosine hydroxylase immunopositive fibres, adjacent to AVP axon terminals. Our data strongly suggest that the AVPMNN ascending system plays a role in the regulation of the excitability of targeted neuronal circuits through upregulation of key postsynaptic density proteins corresponding to excitatory synapses.
下丘脑精氨酸血管加压素 (AVP)- 含有大细胞神经分泌神经元 (AVPMNN) 发出侧支突触支配边缘区域,影响学习、动机行为和恐惧反应。在这里,我们描述了两个关键决定因素的表达变化的动力学,即突触后密度 (PSD) 蛋白 AMPAR 亚基 GluA1 和 PSD 支架蛋白 95 (PSD95),以响应 AVPMNN 神经元激活状态的体内操纵,或暴露于外源性 AVP 体外。体内长期限水,强烈上调 AVPMNN 代谢活性,以及体外应用外源性 AVP,在脑片中,如据报道,从 AVPMNN 接收直接上升传入的脑区(即腹侧海马体、杏仁核和外侧缰核),显著增加 GluA1 和 PSD95 的表达。相比之下,视觉皮层,一个没有观察到接收 AVPMNN 投射的区域,没有显示出这种变化。腹侧海马切片中 V1a 和 V1b 拮抗剂的体外应用消除了通过 Western blot 测量的 AVP 刺激的突触后蛋白表达增加。使用改良的扩展显微镜技术,我们能够定量评估在蓝斑酪氨酸羟化酶免疫阳性纤维的亚细胞隔室中 PSD95 和 GLUA1 密度的显著增加,邻近 AVP 轴突末端。我们的数据强烈表明,AVPMNN 上升系统通过上调对应兴奋性突触的关键突触后密度蛋白,在调节靶向神经元回路的兴奋性中起作用。