School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
Acc Chem Res. 2022 Aug 2;55(15):2019-2032. doi: 10.1021/acs.accounts.2c00206. Epub 2022 Jun 6.
This Account summarizes the progress in protein-calixarene complexation, tracing the developments from binary recognition to the activity of calixarenes and beyond to macrocycle-mediated frameworks. During the past 10 years, we have been tackling the question of protein-calixarene complexation in several ways, mainly by cocrystallization and X-ray structure determination as well as by solution state methods, NMR spectroscopy, isothermal titration calorimetry (ITC), and light scattering. Much of this work benefitted from collaboration, highlighted here. Our first breakthrough was the cocrystallization of cationic cytochrome with sulfonato-calix[4]arene leading to a crystal structure defining three binding sites. Together with NMR studies, a dynamic complexation was deduced in which the calixarene explores the protein surface. Other cationic proteins were similarly amenable to cocrystallization with sulfonato-calix[4]arene, confirming calixarene-arginine/lysine encapsulation and consequent protein assembly. Calixarenes bearing anionic substituents such as sulfonate or phosphonate, but not carboxylate, have proven useful.Studies with larger calix[]arenes ( = 6, 8) demonstrated the phenomenon with increased affinities and more interesting assemblies, including solution-state oligomerization and porous frameworks. While the calix[4]arene cavity accommodates a single cationic side chain, the larger macrocycles adopt different conformations, molding to the protein surface and accommodating several residues (hydrophobic, polar, and/or charged) in small cavities. In addition to accommodating protein features, the calixarene can bind exogenous components such as polyethylene glycol (PEG), metal ions, buffer, and additives. Ternary cocrystallization of cytochrome , sulfonato-calix[8]arene, and spermine resulted in altered framework fabrication due to calixarene encapsulation of the tetraamine. Besides host-guest chemistry with exogenous components, the calixarene can also self-assemble, with numerous instances of macrocycle dimers.Calixarene complexation enables protein encapsulation, not merely side chain encapsulation. Cocrystal structures of sulfonato-calix[8]arene with cytochrome or lectin (RSL) provide evidence of encapsulation, with multiple calixarenes masking the same protein. NMR studies of cytochrome and sulfonato-calix[8]arene are also consistent with multisite binding. In the case of RSL, a symmetric trimer, up to six calixarenes bind the protein yielding a cubic framework mediated by calixarene dimers. Biomolecular calixarene complexation has evolved from molecular recognition to framework construction. This latter development contributes to the challenge in design and preparation of porous molecular materials. Cytochrome and sulfonato-calix[8]arene form frameworks with >60% solvent in which the degree of porosity depends on the protein:calixarene ratio and the crystallization conditions. Recent developments with RSL led to three frameworks with varying porosity depending on the crystallization conditions, particularly the pH. NMR studies indicate a pH-triggered assembly in which two acidic residues appear to play key roles. The field of supramolecular protein chemistry is growing, and this Account aims to encourage new developments at the interface between biomolecular and synthetic/supramolecular chemistry.
本文总结了蛋白质-杯芳烃络合的进展,从二元识别追踪到杯芳烃的活性,并进一步发展到大环介导的框架。在过去的 10 年里,我们主要通过共结晶和 X 射线结构测定以及溶液状态方法、NMR 光谱学、等温热滴定法(ITC)和光散射来研究蛋白质-杯芳烃络合。这项工作的大部分得益于合作,在此突出显示。我们的第一个突破是带正电荷的细胞色素 c 与磺化杯[4]芳烃的共结晶,导致了定义三个结合位点的晶体结构。结合 NMR 研究,推断出一种动态络合,其中杯芳烃探索蛋白质表面。其他阳离子蛋白也同样适用于磺化杯[4]芳烃的共结晶,证实了杯芳烃与精氨酸/赖氨酸的包封以及由此产生的蛋白质组装。带有阴离子取代基(如磺酸盐或膦酸盐,但不是羧酸盐)的杯芳烃已被证明是有用的。对更大的杯[ ]芳烃( = 6,8)的研究表明了这种现象,其亲和力增加,组装更有趣,包括溶液状态的寡聚化和多孔框架。虽然杯[4]芳烃空腔可容纳单个阳离子侧链,但较大的大环采用不同的构象,适应蛋白质表面并在小空腔中容纳几个残基(疏水性、极性和/或带电)。除了容纳蛋白质特征外,杯芳烃还可以结合外源性成分,如聚乙二醇(PEG)、金属离子、缓冲液和添加剂。细胞色素 c、磺化杯[8]芳烃和 spermine 的三元共结晶导致由于杯芳烃包封四胺而改变了框架制造。除了与外源性成分的主体-客体化学外,杯芳烃还可以自组装,形成大量大环二聚体。杯芳烃络合能够实现蛋白质包封,而不仅仅是侧链包封。磺化杯[8]芳烃与细胞色素 c 或凝集素(RSL)的共晶结构提供了包封的证据,多个杯芳烃掩盖了相同的蛋白质。细胞色素 c 和磺化杯[8]芳烃的 NMR 研究也与多结合位点一致。在 RSL 的情况下,一个对称的三聚体,多达六个杯芳烃结合蛋白,形成由杯芳烃二聚体介导的立方框架。生物分子杯芳烃络合已从分子识别发展到框架构建。后一种发展有助于设计和制备多孔分子材料的挑战。细胞色素 c 和磺化杯[8]芳烃形成具有 >60%溶剂的框架,其中孔隙度取决于蛋白质:杯芳烃的比例和结晶条件。最近与 RSL 的发展导致了三种具有不同孔隙度的框架,这取决于结晶条件,特别是 pH 值。NMR 研究表明 pH 触发的组装,其中两个酸性残基似乎起关键作用。超分子蛋白质化学领域正在发展,本文旨在鼓励生物分子和合成/超分子化学之间界面的新发展。