Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, Texas.
Cancer Res. 2022 Aug 3;82(15):2761-2776. doi: 10.1158/0008-5472.CAN-21-4009.
Conventional genetically engineered mouse models (GEMM) are time-consuming, laborious, and offer limited spatiotemporal control. Here, we describe the development of a streamlined platform for in vivo gene activation using CRISPR activation (CRISPRa) technology. Unlike conventional GEMMs, this model system allows for flexible, sustained, and timed activation of one or more target genes using single or pooled lentiviral guides. Myc and Yap1 were used as model oncogenes to demonstrate gene activation in primary pancreatic organoid cultures in vitro and enhanced tumorigenic potential in Myc-activated organoids when transplanted orthotopically in vivo. Implementation of this model as an autochthonous lung cancer model showed that transduction-mediated activation of Myc led to accelerated tumor progression and significantly reduced overall survival relative to nontargeted tumor controls. Furthermore, Myc activation led to the acquisition of an immune suppressive, "cold" tumor microenvironment. Cross-species validation of these results using publicly available RNA/DNA-seq datasets linked MYC to a previously described immunosuppressive molecular subtype in patient tumors, thus identifying a patient cohort that may benefit from combined MYC- and immune-targeted therapies. Overall, this work demonstrates how CRISPRa can be used for rapid functional validation of putative oncogenes and may allow for the identification and evaluation of potential metastatic and oncogenic drivers through competitive screening.
A streamlined platform for programmable CRISPR gene activation enables rapid evaluation and functional validation of putative oncogenes in vivo.
传统的基因工程小鼠模型(GEMM)既耗时又费力,并且提供的时空控制有限。在这里,我们描述了一种使用 CRISPR 激活(CRISPRa)技术进行体内基因激活的简化平台的开发。与传统的 GEMM 不同,该模型系统允许使用单个或 pooled 慢病毒向导灵活、持续和定时激活一个或多个靶基因。Myc 和 Yap1 被用作模型致癌基因,以证明体外原代胰腺类器官培养物中的基因激活,并在体内原位移植时增强 Myc 激活的类器官的致瘤潜能。该模型作为一种同源肺癌模型的实施表明,与非靶向肿瘤对照相比,转导介导的 Myc 激活导致肿瘤进展加速和总生存期显著缩短。此外,Myc 激活导致获得免疫抑制的“冷”肿瘤微环境。使用公开的 RNA/DNA-seq 数据集对这些结果进行种间验证,将 MYC 与患者肿瘤中先前描述的免疫抑制分子亚型相关联,从而确定了可能受益于 MYC 和免疫靶向联合治疗的患者队列。总的来说,这项工作表明了 CRISPRa 如何可用于快速体内验证推定致癌基因的功能,并且可以通过竞争性筛选来识别和评估潜在的转移和致癌驱动因素。
用于可编程 CRISPR 基因激活的简化平台可实现体内推定致癌基因的快速评估和功能验证。