Suppr超能文献

基于无监督的 k 空间驱动的可变形配准网络(KS-RegNet)的实时 MRI 运动估计。

Real-time MRI motion estimation through an unsupervised k-space-driven deformable registration network (KS-RegNet).

机构信息

Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390, United States of America.

Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China.

出版信息

Phys Med Biol. 2022 Jun 29;67(13). doi: 10.1088/1361-6560/ac762c.

Abstract

. Real-time three-dimensional (3D) magnetic resonance (MR) imaging is challenging because of slow MR signal acquisition, leading to highly under-sampled k-space data. Here, we proposed a deep learning-based, k-space-driven deformable registration network (KS-RegNet) for real-time 3D MR imaging. By incorporating prior information, KS-RegNet performs a deformable image registration between a fully-sampled prior image and on-board images acquired from highly-under-sampled k-space data, to generate high-quality on-board images for real-time motion tracking.. KS-RegNet is an end-to-end, unsupervised network consisting of an input data generation block, a subsequent U-Net core block, and following operations to compute data fidelity and regularization losses. The input data involved a fully-sampled, complex-valued prior image, and the k-space data of an on-board, real-time MR image (MRI). From the k-space data, under-sampled real-time MRI was reconstructed by the data generation block to input into the U-Net core. In addition, to train the U-Net core to learn the under-sampling artifacts, the k-space data of the prior image was intentionally under-sampled using the same readout trajectory as the real-time MRI, and reconstructed to serve an additional input. The U-Net core predicted a deformation vector field that deforms the prior MRI to on-board real-time MRI. To avoid adverse effects of quantifying image similarity on the artifacts-ridden images, the data fidelity loss of deformation was evaluated directly in k-space.. Compared with Elastix and other deep learning network architectures, KS-RegNet demonstrated better and more stable performance. The average (±s.d.) DICE coefficients of KS-RegNet on a cardiac dataset for the 5- , 9- , and 13-spoke k-space acquisitions were 0.884 ± 0.025, 0.889 ± 0.024, and 0.894 ± 0.022, respectively; and the corresponding average (±s.d.) center-of-mass errors (COMEs) were 1.21 ± 1.09, 1.29 ± 1.22, and 1.01 ± 0.86 mm, respectively. KS-RegNet also provided the best performance on an abdominal dataset.. KS-RegNet allows real-time MRI generation with sub-second latency. It enables potential real-time MR-guided soft tissue tracking, tumor localization, and radiotherapy plan adaptation.

摘要

实时三维(3D)磁共振(MR)成像具有挑战性,因为 MR 信号采集速度较慢,导致欠采样的 k 空间数据。在这里,我们提出了一种基于深度学习的、k 空间驱动的可变形配准网络(KS-RegNet),用于实时 3D MR 成像。通过结合先验信息,KS-RegNet 在完全采样的先验图像和从高度欠采样的 k 空间数据采集的板载图像之间执行可变形图像配准,以生成用于实时运动跟踪的高质量板载图像。KS-RegNet 是一个端到端的、无监督的网络,由输入数据生成块、后续的 U-Net 核心块以及用于计算数据保真度和正则化损失的后续操作组成。输入数据涉及完全采样的复数先验图像和板载实时磁共振图像(MRI)的 k 空间数据。从 k 空间数据中,通过数据生成块重建欠采样的实时 MRI 并输入 U-Net 核心。此外,为了训练 U-Net 核心来学习欠采样伪影,使用与实时 MRI 相同的读出轨迹故意对先验图像的 k 空间数据进行欠采样,并对其进行重建以作为附加输入。U-Net 核心预测一个变形向量场,将先验 MRI 变形为板载实时 MRI。为了避免在受伪影影响的图像上量化图像相似性的不利影响,直接在 k 空间中评估变形的保真度损失。与 Elastix 和其他深度学习网络结构相比,KS-RegNet 表现出更好和更稳定的性能。在心脏数据集上,KS-RegNet 对于 5-、9-和 13 个扇区 k 空间采集的平均(±标准差)DICE 系数分别为 0.884 ± 0.025、0.889 ± 0.024 和 0.894 ± 0.022,相应的平均(±标准差)质心误差(COMEs)分别为 1.21 ± 1.09、1.29 ± 1.22 和 1.01 ± 0.86 mm。KS-RegNet 还在腹部数据集上提供了最佳性能。KS-RegNet 允许亚秒级延迟的实时 MRI 生成。它能够实现潜在的实时磁共振引导的软组织跟踪、肿瘤定位和放射治疗计划适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b103/9309029/319308f627d3/nihms-1820063-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

2
LAPNet: Non-Rigid Registration Derived in k-Space for Magnetic Resonance Imaging.LAPNet:基于 k 空间的磁共振成像的非刚性配准。
IEEE Trans Med Imaging. 2021 Dec;40(12):3686-3697. doi: 10.1109/TMI.2021.3096131. Epub 2021 Nov 30.
3
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.深度磁共振图像重建:逆问题与神经网络相遇
IEEE Signal Process Mag. 2020 Jan;37(1):141-151. doi: 10.1109/MSP.2019.2950557. Epub 2020 Jan 20.
8
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver.图像引导放射治疗管理呼吸运动:肺和肝。
Clin Oncol (R Coll Radiol). 2020 Dec;32(12):792-804. doi: 10.1016/j.clon.2020.09.008. Epub 2020 Oct 7.
9
Neural Architecture Search for compressed sensing Magnetic Resonance image reconstruction.用于压缩感知磁共振图像重建的神经架构搜索
Comput Med Imaging Graph. 2020 Oct;85:101784. doi: 10.1016/j.compmedimag.2020.101784. Epub 2020 Aug 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验