Suppr超能文献

深度磁共振图像重建:逆问题与神经网络相遇

Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.

作者信息

Liang Dong, Cheng Jing, Ke Ziwen, Ying Leslie

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging.

Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, in Shenzhen, Guangdong, China.

出版信息

IEEE Signal Process Mag. 2020 Jan;37(1):141-151. doi: 10.1109/MSP.2019.2950557. Epub 2020 Jan 20.

Abstract

Image reconstruction from undersampled k-space data has been playing an important role in fast MRI. Recently, deep learning has demonstrated tremendous success in various fields and has also shown potential in significantly accelerating MRI reconstruction with fewer measurements. This article provides an overview of the deep learning-based image reconstruction methods for MRI. Two types of deep learning-based approaches are reviewed: those based on unrolled algorithms and those which are not. The main structure of both approaches are explained, respectively. Several signal processing issues for maximizing the potential of deep reconstruction in fast MRI are discussed. The discussion may facilitate further development of the networks and the analysis of performance from a theoretical point of view.

摘要

从欠采样k空间数据进行图像重建在快速磁共振成像(MRI)中一直发挥着重要作用。近年来,深度学习在各个领域都取得了巨大成功,并且在以更少测量次数显著加速MRI重建方面也显示出潜力。本文概述了基于深度学习的MRI图像重建方法。回顾了两种基于深度学习的方法:基于展开算法的方法和非基于展开算法的方法。分别解释了这两种方法的主要结构。讨论了在快速MRI中最大化深度重建潜力的几个信号处理问题。该讨论可能有助于网络的进一步发展以及从理论角度对性能进行分析。

相似文献

1
Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.深度磁共振图像重建:逆问题与神经网络相遇
IEEE Signal Process Mag. 2020 Jan;37(1):141-151. doi: 10.1109/MSP.2019.2950557. Epub 2020 Jan 20.
3
Deep, deep learning with BART.基于 BART 的深度深度学习。
Magn Reson Med. 2023 Feb;89(2):678-693. doi: 10.1002/mrm.29485. Epub 2022 Oct 18.

引用本文的文献

9
UNCERTAINTY-GUIDED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION VIA CYCLIC MEASUREMENT CONSISTENCY.通过循环测量一致性实现不确定性引导的物理驱动深度学习重建
Proc IEEE Int Conf Acoust Speech Signal Process. 2024 Apr;2024:13441-13445. doi: 10.1109/icassp48485.2024.10447594. Epub 2024 Mar 18.

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
5
ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing.ADMM-CSNet:一种用于图像压缩感知的深度学习方法。
IEEE Trans Pattern Anal Mach Intell. 2020 Mar;42(3):521-538. doi: 10.1109/TPAMI.2018.2883941. Epub 2018 Nov 28.
8
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
10
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验