Suppr超能文献

基于预测性解剖建模改善自适应质子治疗工作流程:概念验证。

Improving workflow for adaptive proton therapy with predictive anatomical modelling: A proof of concept.

机构信息

Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom.

Saudi Proton Therapy Center, King Fahad Medical City, Riyadh, Saudi Arabia.

出版信息

Radiother Oncol. 2022 Aug;173:93-101. doi: 10.1016/j.radonc.2022.05.036. Epub 2022 Jun 3.

Abstract

PURPOSE

To demonstrate predictive anatomical modelling for improving the clinical workflow of adaptive intensity-modulated proton therapy (IMPT) for head and neck cancer.

METHODS

10 radiotherapy patients with nasopharyngeal cancer were included in this retrospective study. Each patient had a planning CT, weekly verification CTs during radiotherapy and predicted weekly CTs from our anatomical model. Predicted CTs were used to create predicted adaptive plans in advance with the aim of maintaining clinically acceptable dosimetry. Adaption was triggered when the increase in mean dose (D) to the parotid glands exceeded 3 Gy(RBE). We compared the accumulated dose of two adaptive IMPT strategies: 1) Predicted plan adaption: One adaptive plan per patient was optimised on a predicted CT triggered by replan criteria. 2) Standard replan: One adaptive plan was created reactively in response to the triggering weekly CT.

RESULTS

Statistical analysis demonstrates that the accumulated dose differences between two adaptive strategies are not significant (p > 0.05) for CTVs and OARs. We observed no meaningful differences in D between the accumulated dose and the planned dose for the CTVs, with mean differences to the high-risk CTV of -1.20 %, -1.23 % and -1.25 % for no adaption, standard and predicted plan adaption, respectively. The accumulated parotid D using predicted plan adaption is within 3 Gy(RBE) of the planned dose and 0.31 Gy(RBE) lower than the standard replan approach on average.

CONCLUSION

Prediction-based replanning could potentially enable adaptive therapy to be delivered without treatment gaps or sub-optimal fractions, as can occur during a standard replanning strategy, though the benefit of using predicted plan adaption over the standard replan was not shown to be statistically significant with respect to accumulated dose in this study. Nonetheless, a predictive replan approach can offer advantages in improving clinical workflow efficiency.

摘要

目的

展示预测性解剖建模,以改善头颈部癌症自适应强度调制质子治疗(IMPT)的临床工作流程。

方法

本回顾性研究纳入 10 例鼻咽癌放疗患者。每位患者均有计划 CT、放疗期间每周验证 CT 和我们解剖模型的每周预测 CT。预测 CT 用于提前创建预测性自适应计划,目的是保持临床可接受的剂量学。当腮腺平均剂量(D)增加超过 3 Gy(RBE)时触发适应性。我们比较了两种自适应 IMPT 策略的累积剂量:1)预测计划适应:根据重新计划标准,针对触发预测 CT 为每位患者优化一个自适应计划。2)标准重新计划:根据触发的每周 CT 反应性地创建一个自适应计划。

结果

统计学分析表明,两种自适应策略的累积剂量差异对于 CTV 和 OAR 不显著(p > 0.05)。我们观察到 CTV 的累积剂量与计划剂量之间的 D 无明显差异,高风险 CTV 的平均差异分别为-1.20%、-1.23%和-1.25%,无适应、标准和预测计划适应分别为。使用预测计划适应的累积腮腺 D 与计划剂量相差在 3 Gy(RBE)以内,平均比标准重新计划方法低 0.31 Gy(RBE)。

结论

基于预测的重新计划有可能实现自适应治疗,而不会出现治疗间隙或次优分数,这在标准重新计划策略中可能会发生,尽管在本研究中,与累积剂量相比,使用预测计划适应的益处在统计学上没有显示出显著优势。尽管如此,预测性重新计划方法在提高临床工作流程效率方面具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验