Suppr超能文献

基于量子电路方法的用于检测心脏病的量子K均值聚类方法。

Quantum K-means clustering method for detecting heart disease using quantum circuit approach.

作者信息

Kavitha S S, Kaulgud Narasimha

机构信息

Electronics and Communication Engineering, The National Institute of Engineering, Manandavadi Road, Mysuru, Karnataka 570008 India.

出版信息

Soft comput. 2022 May 31:1-14. doi: 10.1007/s00500-022-07200-x.

Abstract

The development of noisy intermediate- scale quantum computers is expected to signify the potential advantages of quantum computing over classical computing. This paper focuses on quantum paradigm usage to speed up unsupervised machine learning algorithms particularly the K-means clustering method. The main approach is to build a quantum circuit that performs the distance calculation required for the clustering process. This proposed technique is a collaboration of data mining techniques with quantum computation. Initially, extracted heart disease dataset is preprocessed and classical K-means clustering performance is evaluated. Later, the quantum concept is applied to the classical approach of the clustering algorithm. The comparative analysis is performed between quantum and classical processing to check performance metrics.

摘要

噪声中等规模量子计算机的发展有望彰显量子计算相对于经典计算的潜在优势。本文着重于量子范式的应用,以加速无监督机器学习算法,特别是K均值聚类方法。主要方法是构建一个执行聚类过程所需距离计算的量子电路。该提议的技术是数据挖掘技术与量子计算的协作。首先,对提取的心脏病数据集进行预处理,并评估经典K均值聚类的性能。随后,将量子概念应用于聚类算法的经典方法。对量子处理和经典处理进行比较分析,以检查性能指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/521a/9152652/f3a7c81f0815/500_2022_7200_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验