Suppr超能文献

利用污水污泥中微生物混合培养物进行多环芳烃生物降解:人工神经网络建模的应用

Polyaromatic hydrocarbons biodegradation using mix culture of microorganisms from sewage waste sludge: application of artificial neural network modelling.

作者信息

Mustafa Yasmen A, Mohammed Sinan J, Ridha Mohanad J M

机构信息

Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq.

Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq.

出版信息

J Environ Health Sci Eng. 2022 Feb 26;20(1):405-418. doi: 10.1007/s40201-022-00787-1. eCollection 2022 Jun.

Abstract

PURPOSE

In this study, we aimed to examine the tolerance of mixed culture of microorganisms isolated from sewage waste sludge to degrade high concentrations of polyaromatic hydrocarbons, naphthalene, and phenanthrene. The performance of the artificial neural network (ANN) model to predict and simulate the experimental biodegradation results was investigated.

METHODS

The mixed culture of microorganisms was isolated from sewage waste sludge and adopted to biodegrade naphthalene and phenanthrene at different concentrations (100-1000mg/L). Sewage waste sludge obtained from wastewater treatment plants. A three-layer feed-forward network with a sigmoid transfer function (logsig) at the hidden layer, a linear transfer function (purelin) at the output layer, and a backpropagation training algorithm was used to set the ANN model.

RESULTS

The results of this study show that naphthalene at concentrations of 100, 300, 700, and 1000 mg/L was depleted after incubation with the mixed culture for 6, 8, 14, and 16 days, respectively. For phenanthrene, depletion of 100, 300, 600, and 1000 mg/L was achieved after 8, 11, 16, and 19 days of incubation, respectively. A high correlation coefficient of 99.5% between the predicted and the experimental results were obtained by using the AAN model.

CONCLUSION

The results indicated that the mixed culture of microorganisms from sewage waste sludge could effectively consume naphthalene and phenanthrene as carbon and energy sources. Also, the ANN model could efficiently predict the experimental results for biodegradation treatment.

摘要

目的

在本研究中,我们旨在检测从污水污泥中分离出的微生物混合培养物对高浓度多环芳烃、萘和菲的降解耐受性。研究了人工神经网络(ANN)模型预测和模拟实验生物降解结果的性能。

方法

从污水污泥中分离出微生物混合培养物,用于降解不同浓度(100 - 1000mg/L)的萘和菲。污水污泥取自污水处理厂。使用一个隐藏层具有Sigmoid传递函数(logsig)、输出层具有线性传递函数(purelin)以及反向传播训练算法的三层前馈网络来设置ANN模型。

结果

本研究结果表明,浓度为100、300、700和1000mg/L的萘分别与混合培养物孵育6、8、14和16天后被耗尽。对于菲,浓度为100、300、600和1000mg/L的菲分别在孵育8、11、16和19天后被耗尽。使用AAN模型得到的预测结果与实验结果之间的相关系数高达99.5%。

结论

结果表明,来自污水污泥的微生物混合培养物能够有效地将萘和菲作为碳源和能源消耗。此外,ANN模型能够有效地预测生物降解处理的实验结果。

相似文献

本文引用的文献

2
Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches.多环芳烃:来源、毒性及修复方法
Front Microbiol. 2020 Nov 5;11:562813. doi: 10.3389/fmicb.2020.562813. eCollection 2020.
10
Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene.聚苯乙烯微塑料粒径对菲和硝基苯吸附的影响。
Ecotoxicol Environ Saf. 2019 May 30;173:331-338. doi: 10.1016/j.ecoenv.2019.02.037. Epub 2019 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验