Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
Neuromodulation. 2022 Jun;25(4):578-587. doi: 10.1111/ner.13342. Epub 2022 Feb 15.
Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date.
We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex.
We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs.
Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001).
Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
经颅直流电刺激(tDCS)对工作记忆是一种诱人的治疗方法,但目前的证据喜忧参半。
我们测试了从刺激前到刺激后,均匀 2 mA 剂量的电场强度对工作记忆变化的影响。其次,我们从统计学上评估了一种个体化 tDCS 剂量的反向计算方法及其对皮质电场归一化的影响。
我们对 28 名健康老年人(女性 15 名,平均年龄 73.7 岁,标准差 7.3)的数据进行了电场建模,这些老年人接受了 10 次双侧背外侧前额叶皮质(DLPFC)的主动 2 mA tDCS(N=14)或假 tDCS(N=14)治疗,采用三盲设计。我们在高于中位数、来自主动 2 mA 的高电场条件(N=7)、低于中位数、来自主动 2 mA 的低电场条件(N=7)和假条件(N=14)下,评估了 N 回任务中电场强度与工作记忆变化的关系,在左、右 DLPFC 的感兴趣区域(ROI)。然后,我们确定了产生群体平均电场的个体化反向计算剂量,并测量了相同 ROI 下均匀 2 mA 剂量与个体化反向计算剂量之间的电场方差。
在左 DLPFC 的高于中位数的主动 2 mA 电场条件下,从 tDCS 前到后工作记忆的改善具有统计学意义(混合方差分析,p=0.013)。此外,反向计算模型显著降低了两个 ROI 的电场方差(莱文检验;p<0.001)。
均匀 2 mA 剂量在左 DLPFC 产生的更高电场似乎会促进 tDCS 对工作记忆的改善。反向计算模型产生的个体化剂量可显著降低皮质电场的方差。总之,使用反向计算模型在参与者之间产生相同的、高皮质电场可能会为未来的工作记忆 tDCS 治疗提供更有效的方法。