Suppr超能文献

嵌套生物医学事件的条件概率联合提取:基于神经网络的统一提取框架设计

Conditional Probability Joint Extraction of Nested Biomedical Events: Design of a Unified Extraction Framework Based on Neural Networks.

作者信息

Wang Yan, Wang Jian, Lu Huiyi, Xu Bing, Zhang Yijia, Banbhrani Santosh Kumar, Lin Hongfei

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian, China.

Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.

出版信息

JMIR Med Inform. 2022 Jun 7;10(6):e37804. doi: 10.2196/37804.

Abstract

BACKGROUND

Event extraction is essential for natural language processing. In the biomedical field, the nested event phenomenon (event A as a participating role of event B) makes extracting this event more difficult than extracting a single event. Therefore, the performance of nested biomedical events is always underwhelming. In addition, previous works relied on a pipeline to build an event extraction model, which ignored the dependence between trigger recognition and event argument detection tasks and produced significant cascading errors.

OBJECTIVE

This study aims to design a unified framework to jointly train biomedical event triggers and arguments and improve the performance of extracting nested biomedical events.

METHODS

We proposed an end-to-end joint extraction model that considers the probability distribution of triggers to alleviate cascading errors. Moreover, we integrated the syntactic structure into an attention-based gate graph convolutional network to capture potential interrelations between triggers and related entities, which improved the performance of extracting nested biomedical events.

RESULTS

The experimental results demonstrated that our proposed method achieved the best F1 score on the multilevel event extraction biomedical event extraction corpus and achieved a favorable performance on the biomedical natural language processing shared task 2011 Genia event corpus.

CONCLUSIONS

Our conditional probability joint extraction model is good at extracting nested biomedical events because of the joint extraction mechanism and the syntax graph structure. Moreover, as our model did not rely on external knowledge and specific feature engineering, it had a particular generalization performance.

摘要

背景

事件提取对于自然语言处理至关重要。在生物医学领域,嵌套事件现象(事件A作为事件B的参与角色)使得提取此类事件比提取单个事件更加困难。因此,嵌套生物医学事件的提取性能一直不尽人意。此外,以往的工作依赖于流水线方式构建事件提取模型,这种方式忽略了触发词识别和事件论元检测任务之间的依赖性,并产生了显著的级联错误。

目的

本研究旨在设计一个统一框架,联合训练生物医学事件触发词和论元,提高嵌套生物医学事件的提取性能。

方法

我们提出了一种端到端联合提取模型,该模型考虑触发词的概率分布以减轻级联错误。此外,我们将句法结构集成到基于注意力的门控图卷积网络中,以捕捉触发词与相关实体之间的潜在关联,从而提高嵌套生物医学事件的提取性能。

结果

实验结果表明,我们提出的方法在多级事件提取生物医学事件提取语料库上获得了最佳F1分数,并且在生物医学自然语言处理共享任务2011年Genia事件语料库上取得了良好的性能。

结论

我们的条件概率联合提取模型由于其联合提取机制和句法图结构,擅长提取嵌套生物医学事件。此外,由于我们的模型不依赖外部知识和特定特征工程,它具有独特的泛化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d08/9214613/4007b6d5a021/medinform_v10i6e37804_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验