Suppr超能文献

基于注意力机制的联合模型与基于转换器的加权图卷积网络在提取药物不良反应关系中的应用。

An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation.

机构信息

Laboratory of Informatics, Signals, Automatic, and Cognitivism (LISAC), Faculty of Sciences Dhar ELMehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, USA

出版信息

J Biomed Inform. 2022 Jan;125:103968. doi: 10.1016/j.jbi.2021.103968. Epub 2021 Dec 4.

Abstract

Adverse drug event (ADE) relation extraction is a crucial task for drug safety surveillance which aims to discover potential relations between ADE mentions from unstructured medical texts. To date, the graph convolutional networks (GCN) have been the state-of-the-art solutions for improving the ability of relation extraction task. However, there are many challenging issues that should be addressed. Among these, the syntactic information is not fully exploited by GCN-based methods, especially the diversified dependency edges. Still, these methods fail to effectively extract complex relations that include nested, discontinuous and overlapping mentions. Besides, the task is primarily regarded as a classification problem where each candidate relation is treated independently which neglects the interaction between other relations. To deal with these issues, in this paper, we propose an attentive joint model with transformer-based weighted GCN for extracting ADE Relations, called ADERel. Firstly, the ADERel system formulates the ADE relation extraction task as an N-level sequence labelling so as to model the complex relations in different levels and capture greater interaction between relations. Then, it exploits our neural joint model to process the N-level sequences jointly. The joint model leverages the contextual and structural information by adopting a shared representation that combines a bidirectional encoder representation from transformers (BERT) and our proposed weighted GCN (WGCN). The latter assigns a score to each dependency edge within a sentence so as to capture rich syntactic features and determine the most influential edges for extracting ADE relations. Finally, the system employs a multi-head attention to exchange boundary knowledge across levels. We evaluate ADERel on two benchmark datasets from TAC 2017 and n2c2 2018 shared tasks. The experimental results show that ADERel is superior in performance compared with several state-of-the-art methods. The results also demonstrate that incorporating a transformer model with WGCN makes the proposed system more effective for extracting various types of ADE relations. The evaluations further highlight that ADERel takes advantage of joint learning, showing its effectiveness in recognizing complex relations.

摘要

药物不良事件(ADE)关系抽取是药物安全监测的一项关键任务,旨在从非结构化医疗文本中发现 ADE 提及之间的潜在关系。迄今为止,图卷积网络(GCN)一直是提高关系抽取任务能力的最新解决方案。然而,仍存在许多需要解决的挑战性问题。其中,基于 GCN 的方法没有充分利用句法信息,尤其是多样化的依存边。这些方法仍然无法有效地提取包含嵌套、不连续和重叠提及的复杂关系。此外,该任务主要被视为分类问题,其中每个候选关系都被独立对待,忽略了其他关系之间的交互。为了解决这些问题,本文提出了一种基于注意力的联合模型,该模型基于基于转换器的加权 GCN 来提取 ADE 关系,称为 ADERel。首先,ADERel 系统将 ADE 关系提取任务表述为 N 级序列标记,以对不同级别中的复杂关系进行建模,并捕获关系之间更大的交互。然后,它利用我们的神经联合模型来联合处理 N 级序列。联合模型通过采用一种共享表示,将来自转换器的双向编码器表示(BERT)和我们提出的加权 GCN(WGCN)相结合,来利用上下文和结构信息。后者为句子中的每个依存边分配一个分数,以捕获丰富的句法特征,并确定最具影响力的边来提取 ADE 关系。最后,系统使用多头注意力在不同级别之间交换边界知识。我们在来自 TAC 2017 和 n2c2 2018 共享任务的两个基准数据集上评估了 ADERel。实验结果表明,与几种最新方法相比,ADERel 的性能更优。结果还表明,将转换器模型与 WGCN 结合使用,使所提出的系统更有效地提取各种类型的 ADE 关系。评估进一步强调了 ADERel 利用联合学习的优势,表明其在识别复杂关系方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验