Department of Computer Science, Harbin Institute of Technology, Shenzhen, 518055, China.
Department of Computer Science, Harbin Institute of Technology, Shenzhen, 518055, China; Peng Cheng Laboratory, Shenzhen, China.
J Biomed Inform. 2024 Feb;150:104599. doi: 10.1016/j.jbi.2024.104599. Epub 2024 Jan 23.
Event extraction plays a crucial role in natural language processing. However, in the biomedical domain, the presence of nested events adds complexity to event extraction compared to single events, and these events usually have strong semantic relationships and constraints. Previous approaches ignored the binding connections between these complex nested events. This study aims to develop a unified framework based on event constraint information that jointly extract biomedical event triggers and arguments and enhance the performance of nested biomedical event extraction.
We propose a multi-task learning framework based on constraint information called CMBEE for the task of biomedical event extraction. The N-tuple form of event patterns is used to represent the constrained information, which is integrated into role detection and event type classification tasks. The framework use attention mechanism and gating mechanism to explore the fusion of multiple tuple information, as well as local and global constrained information fusion methods to dig further into the connections between events.
Experimental results demonstrate that our proposed method achieves the highest F1 score on a multilevel event extraction biomedical (MLEE) corpus and performs favorably on the biomedical natural language processing shared task 2013 Genia event corpus (GE 13).
The experimental results indicate that modeling event patterns and constraints for multi-event extraction tasks is effective for complex biomedical event extraction. The fusion strategy proposed in this study, which incorporates different constraint information, helps to better express semantic information.
事件抽取在自然语言处理中起着至关重要的作用。然而,在生物医学领域,与单事件相比,嵌套事件的存在使事件抽取更加复杂,并且这些事件通常具有很强的语义关系和约束。以前的方法忽略了这些复杂嵌套事件之间的绑定关系。本研究旨在开发一个基于事件约束信息的统一框架,共同提取生物医学事件触发词和参数,并提高嵌套生物医学事件抽取的性能。
我们提出了一种基于约束信息的多任务学习框架 CMBEE,用于生物医学事件抽取任务。事件模式的 N 元组形式用于表示约束信息,该信息被集成到角色检测和事件类型分类任务中。该框架使用注意力机制和门控机制来探索多种元组信息的融合,以及局部和全局约束信息融合方法,以进一步挖掘事件之间的联系。
实验结果表明,我们提出的方法在多层次生物医学事件抽取语料库(MLEE)上实现了最高的 F1 分数,并且在生物医学自然语言处理共享任务 2013 年基因事件语料库(GE 13)上表现良好。
实验结果表明,对多事件抽取任务进行事件模式和约束建模是有效的复杂生物医学事件抽取。本研究提出的融合策略,结合了不同的约束信息,有助于更好地表达语义信息。