HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
HUS Diagnostic Center, Radiology, Helsinki University and Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.
Phys Med. 2022 Jul;99:102-112. doi: 10.1016/j.ejmp.2022.05.011. Epub 2022 Jun 4.
Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation.
Two approaches were investigated for noise image estimation of a single acquisition image: direct noise image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (N = 37, N = 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform regions and in automated noise and contrast assessment.
The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest MSE on clinical labeled uniform regions.
DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise estimation combined with tissue segmentation may enable more comprehensive image quality characterization.
计算机断层扫描(CT)图像噪声通常通过均匀图像区域的像素值的标准差(SD)来确定。本研究探讨了深度学习(DL)如何应用于头部 CT 图像噪声估计。
研究了两种方法来估计单个采集图像的噪声图像:使用有监督 DnCNN 卷积神经网络(CNN)结构的直接噪声图像估计,以及使用经过有监督和无监督噪声 2 噪声训练实验的去噪 UNet-CNN 估计的去噪图像的减法。使用 3D 和 2D CNN 架构使用局部 SD 图评估噪声。使用 DL 模型比较了人体模拟体模 CT 图像数据集(N=9 次扫描,3 次重复)。使用减法图像的 SD 值作为真实值,确定 SD 值的均方误差(MSE)和平均绝对百分比误差(MAPE)。使用手动标记的均匀区域中的 DL 进行噪声估计,并在自动噪声和对比度评估中展示了临床头部 CT 低剂量数据集(N=37,N=10 个受试者)的 DL 适用性。
在体模数据集的比较中,使用 3D-CNN 进行直接 SD 估计是最准确的评估方法(MAPE=15.5%,MSE=6.3HU)。无监督噪声 2 噪声方法仅提供略差的结果(MAPE=20.2%,MSE=13.7HU)。2DCNN 和无监督 UNet 模型在临床标记的均匀区域上提供了最小的 MSE。
基于 DL 的临床图像评估是可行的,与真实图像噪声相比提供了可接受的准确性。在没有真实数据的情况下,噪声 2 噪声方法可能在临床应用中可行。噪声估计与组织分割相结合可能能够实现更全面的图像质量特征描述。