Suppr超能文献

运用机器学习优化城市水澄清器几何形状的成本效益。

Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics.

机构信息

Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.

Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Water Res. 2022 Jul 15;220:118685. doi: 10.1016/j.watres.2022.118685. Epub 2022 May 29.

Abstract

Clarification basins are ubiquitous water treatment units applied across urban water systems. Diverse applications include stormwater systems, stabilization lagoons, equalization, storage and green infrastructure. Residence time (RT), surface overflow rate (SOR) and the Storm Water Management Model (SWMM) are readily implemented but are not formulated to optimize basin geometrics because transport dynamics remain unresolved. As a result, basin design yields high costs from hundreds of thousands to tens of million USD. Basin optimization and retrofits can benefit from more robust and efficient tools. More advanced methods such as computational fluid dynamics (CFD), while demonstrating benefits for resolving transport, can be complex and computationally expensive for routine applications. To provide stakeholders with an efficient and robust tool, this study develops a novel optimization framework for basin geometrics with machine learning (ML). This framework (1) leverages high-performance computing (HPC) and the predictive capability of CFD to provide artificial neural network (ANN) development and (2) integrates a trained ANN model with a hybrid evolutionary-gradient-based optimization algorithm through the ANN automatic differentiation (AD) functionality. ANN model results for particulate matter (PM) clarification demonstrate high predictive capability with a coefficient of determination (R) of 0.998 on the test dataset. The ANN model for total PM clarification of three (3) heterodisperse particle size distributions (PSDs) also illustrates good performance (R>0.986). The proposed framework was implemented for a basin and watershed loading conditions in Florida (USA), the ML basin designs yield substantially improved cost-effectiveness compared to common designs (square and circular basins) and RT-based design for all PSDs tested. To meet a presumptive regulatory criteria of 80% PM separation (widely adopted in the USA), the ML framework yields 4.7X to 8X lower cost than the common basin designs tested. Compared to the RT-based design, the ML design yields 5.6X to 83.5X cost reduction as a function of the finer, medium, and coarser PSDs. Furthermore, the proposed framework benefits from ANN's high computational efficiency. Optimization of basin geometrics is performed in minutes on a laptop using the framework. The framework is a promising adjuvant tool for cost-effective and sustainable basin implementation across urban water systems.

摘要

澄清池是应用于城市水系统的普遍存在的水处理单元。其多样化的应用包括雨水系统、稳定化泻湖、均衡、储存和绿色基础设施。停留时间 (RT)、表面溢流率 (SOR) 和雨水管理模型 (SWMM) 易于实施,但未针对优化盆地几何形状进行制定,因为输送动力学仍未解决。结果,盆地设计的成本高达数十万美元至数千万美元。盆地优化和改造可以从更强大和高效的工具中受益。更先进的方法,如计算流体动力学 (CFD),虽然在解决输送问题方面表现出优势,但对于常规应用来说,可能会非常复杂和计算成本高昂。为了为利益相关者提供高效和强大的工具,本研究使用机器学习 (ML) 为盆地几何形状开发了一种新颖的优化框架。该框架 (1) 利用高性能计算 (HPC) 和 CFD 的预测能力为人工神经网络 (ANN) 的开发提供支持,(2) 通过 ANN 自动微分 (AD) 功能将经过训练的 ANN 模型与混合进化梯度优化算法集成。颗粒物质 (PM) 澄清的 ANN 模型结果在测试数据集上具有 0.998 的高决定系数 (R),展示了很高的预测能力。对于三种 (3) 异质粒径分布 (PSD) 的总 PM 澄清的 ANN 模型也表现出良好的性能 (R>0.986)。该框架已在佛罗里达州 (美国) 的盆地和流域加载条件下实施,与常见设计 (方形和圆形盆地) 和基于 RT 的设计相比,ML 盆地设计在所有测试的 PSD 中都大大提高了成本效益。为了满足 80%PM 分离的假定监管标准 (在美国广泛采用),ML 框架的成本比测试的常见盆地设计低 4.7 到 8 倍。与基于 RT 的设计相比,作为更细、中等和更粗 PSD 的函数,ML 设计的成本降低了 5.6 到 83.5 倍。此外,该框架还受益于 ANN 的高计算效率。使用该框架,在笔记本电脑上只需几分钟即可完成盆地几何形状的优化。该框架是城市水系统中具有成本效益和可持续性的盆地实施的有前途的辅助工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验