Data Science Institute, I-Biostat, Hasselt University, Hasselt 3500, Belgium; Health, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium.
Health, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium.
J Biomed Inform. 2022 Jul;131:104111. doi: 10.1016/j.jbi.2022.104111. Epub 2022 Jun 4.
The Population Reference Interval (PRI) refers to the range of outcomes that are expected in a healthy population for a clinical or a diagnostic measurement. It is widely used in daily clinical practice and is essential for assisting clinical decision-making in diagnostics and treatment. In this manuscript, we start from the observation that each healthy individual has its own range for a given variable, depending on personal biological traits. This Individual Reference Interval (IRI) can be calculated and be utilised in clinical practice, in combination with the PRI for improved decision making. Nonparametric estimation of IRIs would require quite long time series. To circumvent this problem, we propose methods based on quantile models in combination with penalised parameter estimation methods that allow for information-sharing among the subjects. Our approach considers the calculation of an IRI as a prediction problem rather than an estimation problem. We perform a simulation study designed to benchmark the methods under different assumptions. From the simulation study we conclude that the new methods are robust and provide empirical coverages close to the nominal level. Finally, we evaluate the methods on real-life data consisting of eleven clinical tests and metabolomics measurements from the VITO IAM Frontier study.
人群参考区间(PRI)是指在健康人群中,对于某一临床或诊断测量结果所预期的范围。它在日常临床实践中被广泛应用,对于辅助诊断和治疗中的临床决策至关重要。在本文中,我们从观察到的现象出发,即每个健康个体都有其特定变量的范围,这取决于个体的生物学特征。这种个体参考区间(IRI)可以计算出来,并在临床实践中与 PRI 结合使用,以提高决策的准确性。非参数估计 IRI 需要相当长的时间序列。为了规避这个问题,我们提出了基于分位数模型并结合惩罚参数估计方法的方法,这些方法允许在个体之间共享信息。我们的方法将计算 IRI 视为预测问题,而不是估计问题。我们进行了一项模拟研究,旨在在不同假设下对这些方法进行基准测试。从模拟研究中我们得出结论,新方法是稳健的,并提供了接近名义水平的经验覆盖率。最后,我们在包含来自 VITO IAM 前沿研究的 11 项临床检测和代谢组学测量的真实数据上评估了这些方法。