Pusparum Murih, Thas Olivier, Beck Stephan, Ecker Simone, Ertaylan Gökhan
Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol, Belgium.
Data Science Institute, Hasselt University, Hasselt, Belgium.
NPJ Digit Med. 2025 Aug 21;8(1):537. doi: 10.1038/s41746-025-01911-9.
Age is the most important risk factor for the majority human diseases, leading to the exploration of innovative approaches, including the development of predictors to estimate biological age (BA). These predictors offer promising insights into the ageing process and age-related diseases. With real-time, multi-modal data streams and continuous patient monitoring, these BA can also inform the construction of 'human digital twins', quantifying how age-related changes impact health trajectories. This study highlights the significance of BA within a deeply phenotyped longitudinal cohort, using omics-based approaches alongside gold-standard clinical risk predictors. BA and health traits predictions were computed from 29 epigenetics, 4 clinical-biochemistry, 2 proteomics, and 3 metabolomics clocks. The study reveals that ageing is different between individuals but relatively stable within individuals. We suggest that BA should be considered crucial biomarkers complementing routine clinical tests. Regular updates of BA predictions within digital twin frameworks can also help guiding individualised treatment plans.
年龄是大多数人类疾病最重要的风险因素,这促使人们探索创新方法,包括开发用于估计生物年龄(BA)的预测指标。这些预测指标为衰老过程和与年龄相关的疾病提供了有前景的见解。借助实时、多模态数据流和持续的患者监测,这些生物年龄还可为“人类数字孪生体”的构建提供信息,量化与年龄相关的变化如何影响健康轨迹。本研究利用基于组学的方法以及金标准临床风险预测指标,突出了生物年龄在深度表型纵向队列中的重要性。生物年龄和健康特征预测是根据29种表观遗传学、4种临床生物化学、2种蛋白质组学和3种代谢组学时钟计算得出的。该研究表明,衰老在个体之间存在差异,但在个体内部相对稳定。我们建议生物年龄应被视为补充常规临床检查的关键生物标志物。在数字孪生体框架内定期更新生物年龄预测也有助于指导个性化治疗方案。