Suppr超能文献

具有随机传输延迟的网络系统的量化递归滤波

Quantized recursive filtering for networked systems with stochastic transmission delays.

作者信息

Zhao Zhongyi, Yi Xiaojian, Ma Lifeng, Bai Xingzhen

机构信息

College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China.

出版信息

ISA Trans. 2022 Aug;127:99-107. doi: 10.1016/j.isatra.2022.05.033. Epub 2022 May 28.

Abstract

This paper investigates the recursive filtering problem for a class of networked systems subject to the uniform quantization effects and stochastic transmission delays. The system output is quantized according to a uniform quantization mechanism, and then sent to the remote filter via a communication network undergoing stochastic transmission delays (which are modeled by a sequence of independent and identically distributed variables). To deal with the stochastic transmission delays, an indicator function is delicately designed to ensure that the filtering process is implemented based on the quantized measurement with the newest timestamp available for the filter. With the aid of the indicator function, a free-delay system is obtained by using the augmented system method. The aim of this paper is to design a Kalman-type filter for the augmented system such that an upper bound of the filtering error covariance is guaranteed and minimized. With the aid of the stochastic analysis method, the desired upper bound of the filtering error covariance is derived by recursively solving two Riccati-like difference equations. Then, the upper bound is minimized by properly selecting the filter parameters. Finally, a numerical example is provided to illustrate the validity of the developed filtering scheme.

摘要

本文研究了一类受均匀量化效应和随机传输延迟影响的网络系统的递归滤波问题。系统输出根据均匀量化机制进行量化,然后通过经历随机传输延迟的通信网络(由一系列独立同分布变量建模)发送到远程滤波器。为了处理随机传输延迟,精心设计了一个指示函数,以确保基于滤波器可用的最新时间戳的量化测量来实现滤波过程。借助指示函数,通过增广系统方法获得了一个无延迟系统。本文的目的是为增广系统设计一个卡尔曼型滤波器,以保证并最小化滤波误差协方差的上界。借助随机分析方法,通过递归求解两个类似黎卡提的差分方程,得出了滤波误差协方差的期望上界。然后,通过适当选择滤波器参数来最小化该上界。最后,提供了一个数值示例来说明所提出的滤波方案的有效性。

相似文献

1
Quantized recursive filtering for networked systems with stochastic transmission delays.
ISA Trans. 2022 Aug;127:99-107. doi: 10.1016/j.isatra.2022.05.033. Epub 2022 May 28.
2
An Event-Triggering Approach to Recursive Filtering for Complex Networks With State Saturations and Random Coupling Strengths.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4279-4289. doi: 10.1109/TNNLS.2019.2953649. Epub 2019 Dec 31.
3
A Variance-Constrained Approach to Recursive Filtering for Nonlinear 2-D Systems With Measurement Degradations.
IEEE Trans Cybern. 2018 Jun;48(6):1877-1887. doi: 10.1109/TCYB.2017.2716400. Epub 2017 Jun 27.
4
Recursive Filtering Under Probabilistic Encoding-Decoding Schemes: Handling Randomly Occurring Measurement Outliers.
IEEE Trans Cybern. 2024 Jun;54(6):3378-3391. doi: 10.1109/TCYB.2023.3234452. Epub 2024 May 30.
5
State-Saturated Recursive Filter Design for Stochastic Time-Varying Nonlinear Complex Networks Under Deception Attacks.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):3788-3800. doi: 10.1109/TNNLS.2019.2946290. Epub 2019 Nov 14.
6
A Dynamic Event-Triggered Approach to Recursive Filtering for Complex Networks With Switching Topologies Subject to Random Sensor Failures.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4381-4388. doi: 10.1109/TNNLS.2019.2951948. Epub 2019 Dec 11.
7
Event-Triggered Recursive Filtering for Shift-Varying Linear Repetitive Processes.
IEEE Trans Cybern. 2020 Apr;50(4):1761-1770. doi: 10.1109/TCYB.2018.2881312. Epub 2018 Dec 3.
8
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
IEEE Trans Neural Netw Learn Syst. 2016 Aug;27(8):1604-14. doi: 10.1109/TNNLS.2014.2381853. Epub 2015 Jan 7.
10
A Recursive Approach to Quantized H State Estimation for Genetic Regulatory Networks Under Stochastic Communication Protocols.
IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2840-2852. doi: 10.1109/TNNLS.2018.2885723. Epub 2019 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验