Suppr超能文献

概率编码-解码方案下的递归滤波:处理随机出现的测量异常值

Recursive Filtering Under Probabilistic Encoding-Decoding Schemes: Handling Randomly Occurring Measurement Outliers.

作者信息

Zou Lei, Wang Zidong, Dong Hongli, Yi Xiaojian, Han Qing-Long

出版信息

IEEE Trans Cybern. 2024 Jun;54(6):3378-3391. doi: 10.1109/TCYB.2023.3234452. Epub 2024 May 30.

Abstract

This article focuses on the recursive filtering problem for networked time-varying systems with randomly occurring measurement outliers (ROMOs), where the so-called ROMOs denote a set of large-amplitude perturbations on measurements. A new model is presented to describe the dynamical behaviors of ROMOs by using a set of independent and identically distributed stochastic scalars. A probabilistic encoding-decoding scheme is exploited to convert the measurement signal into the digital format. For the purpose of preserving the filtering process from the performance degradation induced by measurement outliers, a novel recursive filtering algorithm is developed by using the active detection-based method where the "problematic" measurements (i.e., the measurements contaminated by outliers) are removed from the filtering process. A recursive calculation approach is proposed to derive the time-varying filter parameter via minimizing such the upper bound on the filtering error covariance. The uniform boundedness of the resultant time-varying upper bound is analyzed for the filtering error covariance by using the stochastic analysis technique. Two numerical examples are presented to verify the effectiveness and correctness of our developed filter design approach.

摘要

本文聚焦于具有随机出现测量异常值(ROMO)的网络时变系统的递归滤波问题,其中所谓的ROMO表示测量值上的一组大幅度扰动。提出了一种新模型,通过使用一组独立同分布的随机标量来描述ROMO的动态行为。利用概率编码 - 解码方案将测量信号转换为数字格式。为了使滤波过程免受测量异常值引起的性能下降影响,通过使用基于主动检测的方法开发了一种新颖的递归滤波算法,其中从滤波过程中去除“有问题的”测量值(即被异常值污染的测量值)。提出了一种递归计算方法,通过最小化滤波误差协方差的上界来推导时变滤波器参数。利用随机分析技术分析了所得时变上界对于滤波误差协方差的一致有界性。给出了两个数值例子来验证我们所开发的滤波器设计方法的有效性和正确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验