Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
Manufacture Française des Pneumatiques Michelin, Clermont-Ferrand, 63000, France.
Nat Commun. 2022 Jun 7;13(1):3154. doi: 10.1038/s41467-022-30947-8.
Large or repeated mechanical loads usually degrade polymers by accelerating fragmentation of their backbones but rarely, they can cause new backbone bonds to form. When these new bonds form faster than the original bonds break, mechanical degradation may be arrested or reversed in real time. Exploiting such constructive remodeling has proven challenging because we lack an understanding of the competition between bond-forming and bond-breaking reactions in mechanically-stressed polymers. Here we report the molecular mechanism and analysis of constructive remodeling driven by the macroradical products of mechanochemical fragmentation of a hydrocarbon backbone. By studying the changing compositions of a random copolymer of styrene and butadiene sheared at 10 °C in the presence of different additives we developed an approach to characterizing this growth/fracture competition, which is generalizable to other underlying chemistries. Our results demonstrate that constructive remodeling is achievable under practically relevant conditions, requires neither complex chemistries, elaborate macromolecular architectures or free monomers, and is amenable to detailed mechanistic interrogation and simulation. These findings constitute a quantitative framework for systematic studies of polymers capable of autonomously counteracting mechanical degradation at the molecular level.
大型或重复的机械负荷通常会通过加速聚合物主链的断裂来降解聚合物,但很少会导致新的主链键形成。当这些新键的形成速度快于原始键的断裂速度时,机械降解可能会实时停止或逆转。由于我们缺乏对机械应力下聚合物中键形成和键断裂反应之间竞争的理解,因此利用这种建设性的重塑一直具有挑战性。在这里,我们报告了由碳氢化合物主链机械化学断裂的大分子自由基产物驱动的建设性重塑的分子机制和分析。通过研究在 10°C 下剪切的苯乙烯和丁二烯无规共聚物在不同添加剂存在下的组成变化,我们开发了一种方法来表征这种生长/断裂竞争,该方法可推广到其他潜在化学中。我们的结果表明,在实际相关条件下可以实现建设性重塑,既不需要复杂的化学,也不需要精心设计的大分子结构或游离单体,并且可以进行详细的机械探究和模拟。这些发现构成了一个定量框架,用于系统研究能够在分子水平上自主抵抗机械降解的聚合物。