Moad Graeme, Rizzardo Ezio, Thang San H
Commonwealth Scientific and Industrial Research Organisation (CSIRO) Molecular and Health Technologies, Bayview Avenue, Clayton, Victoria 3168, Australia.
Acc Chem Res. 2008 Sep;41(9):1133-42. doi: 10.1021/ar800075n. Epub 2008 Aug 14.
Radical polymerization is one of the most widely used processes for the commercial production of high-molecular-weight polymers. The main factors responsible for the preeminent position of radical polymerization are the ability to polymerize a wide array of monomers, tolerance of unprotected functionality in monomer and solvent, and compatibility with a variety of reaction conditions. Radical polymerization is simple to implement and inexpensive in relation to competitive technologies. However, conventional radical polymerization severely limits the degree of control that researchers can assert over molecular-weight distribution, copolymer composition, and macromolecular architecture. This Account focuses on nitroxide-mediated polymerization (NMP) and polymerization with reversible addition-fragmentation chain transfer (RAFT), two of the more successful approaches for controlling radical polymerization. These processes illustrate two distinct mechanisms for conferring living characteristics on radical polymerization: reversible deactivation (in NMP) and reversible or degenerate chain transfer (in RAFT). We devised NMP in the early 1980s and have exploited this method extensively for the synthesis of styrenic and acrylic polymers. The technique has undergone significant evolution since that time. New nitroxides have led to faster polymerization rates at lower temperatures. However, NMP is only applicable to a restricted range of monomers. RAFT was also developed at CSIRO and has proven both more robust and more versatile. It is applicable to the majority of monomers subject to radical polymerization, but the success of the polymerization depends upon the selection of the RAFT agent for the monomers and reaction conditions. We and other groups have proposed guidelines for selection, and the polymerization of most monomers can be well-controlled to provide minimal retardation and a high fraction of living chains by using one of just two RAFT agents. For example, a tertiary cyanoalkyl trithiocarbonate is suited to (meth)acrylate, (meth)acrylamide, and styrenic monomers, while a cyanomethyl xanthate or dithiocarbamate works with vinyl monomers, such as vinyl acetate or N-vinylpyrrolidone. With the appropriate choice of reagents and polymerization conditions, these reactions possess most of the attributes of living polymerization. We have used these methods in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, including microgels and polymer brushes. Applications of these polymers include novel surfactants, dispersants, coatings and adhesives, biomaterials, membranes, drug-delivery media, electroactive materials, and other nanomaterials.
自由基聚合是用于商业生产高分子量聚合物的最广泛使用的方法之一。使自由基聚合占据突出地位的主要因素包括能够聚合多种单体、对单体和溶剂中未受保护的官能团具有耐受性以及与各种反应条件相兼容。自由基聚合易于实施,与竞争技术相比成本较低。然而,传统的自由基聚合严重限制了研究人员对分子量分布、共聚物组成和大分子结构的控制程度。本综述重点介绍氮氧自由基介导的聚合反应(NMP)和可逆加成-断裂链转移聚合反应(RAFT),这是控制自由基聚合较为成功的两种方法。这些过程展示了赋予自由基聚合活性特征的两种不同机制:可逆失活(在NMP中)和可逆或退化链转移(在RAFT中)。我们在20世纪80年代初设计了NMP,并已广泛利用该方法合成苯乙烯类和丙烯酸类聚合物。自那时以来,该技术有了显著发展。新型氮氧自由基在较低温度下可实现更快的聚合速率。然而,NMP仅适用于有限范围的单体。RAFT也是由澳大利亚联邦科学与工业研究组织(CSIRO)开发的,已证明其更具稳健性和通用性。它适用于大多数可进行自由基聚合的单体,但聚合反应的成功取决于为单体和反应条件选择合适的RAFT试剂。我们和其他研究团队已经提出了选择指南,通过使用仅有的两种RAFT试剂之一,大多数单体的聚合反应能够得到很好的控制,从而实现最小程度的阻聚和高比例的活性链。例如,叔丁基氰基三硫代碳酸酯适用于(甲基)丙烯酸酯、(甲基)丙烯酰胺和苯乙烯类单体,而氰甲基黄原酸酯或二硫代氨基甲酸盐则适用于乙烯基单体,如醋酸乙烯酯或N-乙烯基吡咯烷酮。通过适当选择试剂和聚合条件,这些反应具备活性聚合的大部分特征。我们已使用这些方法合成了结构明确的均聚物、梯度共聚物、二嵌段共聚物、三嵌段共聚物和星形聚合物以及更复杂的结构,包括微凝胶和聚合物刷。这些聚合物在新型表面活性剂、分散剂、涂料和粘合剂、生物材料、膜、药物递送介质、电活性材料以及其他纳米材料等方面都有应用。